RESEARCH ARTICLE
An In vivo Model for Short-Term Evaluation of the Implantation Effects of Biomolecules or Stem Cells in the Dental Pulp
Sally Lacerda-Pinheiro1, Arnaud Marchadier2, Patricio Donãs 3, Dominique Septier3, Laurent Benhamou2, Odile Kellermann1, Michel Goldberg3 , *, Anne Poliard1
Article Information
Identifiers and Pagination:
Year: 2008Volume: 2
First Page: 67
Last Page: 72
Publisher ID: TODENTJ-2-67
DOI: 10.2174/1874210600802010067
Article History:
Received Date: 12/12/2007Acceptance Date: 27/3/2008
Electronic publication date: 29/4/2008
Collection year: 2008

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
The continuously growing rodent incisor is a widely used model to investigate odontogenesis and mineralized tissue formation. This study focused on evaluating the mouse mandibular incisor as an experimental biological tool for analyzing in vivo the capacity of odontoblast-like progenitors or bioactive molecules to contribute to reparative dentinogenesis. We describe here a surgical procedure allowing direct access to the forming part of the incisor dental pulp Amelogenin peptide A+4 adsorbed on agarose beads, or dental pulp progenitor cells were implanted in the pulp following this procedure. After 10 days A+4 induced the formation of an osteodentin occluding almost the totality of the pulp compartment. Implantation of progenitor cells leads to formation of islets of osteodentin-like structures located centrally in the pulp. These pilot studies validate the incisor as an experimental model to test the capacity of progenitor cells or bioactive molecules to induce the formation of reparative dentin.