Abstract

Aim of the Study:

This study aims to evaluate the cytotoxicity of different stereolithographic 3D printed materials and the polyetheretherketone for varying time intervals using MTT assay and by application of these materials for intra-oral usage.

Materials and Methods:

Three groups of disc specimens (5 mm diameter, 2 mm thick) were manufactured by either selective laser melting (PA6 nylon, fiber reinforced PA6 nylon) or milling (PEEK). The cytotoxicity of these materials was tested by culturing the samples on human fibroblast cell lines prior to MTT assays (3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole). MTT assays were completed at 3, 6, and 10 days. Cell grown in normal medium without experimental material served as control. The total cell number and viability of cells pre-incubated with PA6 nylon, fiber-reinforced PA6 nylon, and PEEK were comparable to the control samples. Differences between the growth inhibitory effects of the samples in the MTT assay were below 0.05%.

Results:

Both nylon and fiber-reinforced nylon reduced the proliferation of normal human fibroblasts up to 6 days of treatment. PEEK had better biocompatibility than PA6 nylon and fiber-reinforced nylon. Both PA6 nylon and fiber-reinforced are 3DPrinted materials that showed cytotoxicity at 10 days. However, soaking the nylon materials for 6 days made them safe on normal human cells.

Conclusion:

PEEK material can be considered for intraoral usage as the material is biocompatible. Both PA6 nylon and fiber-reinforced PA6 nylon materials showed increased in-vitro cell death at 10 days, suggesting that they are non-biocompatible for intraoral usage beyond 6 days.

Keywords: Cytotoxicity, Medical materials, 3D printing, Stereolithography, MTT assay, Biocompatibility.
Fulltext HTML PDF ePub
1800
1801
1802
1803
1804