RESEARCH ARTICLE


Effect of Cementation Technique of Individually Formed Fiber-Reinforced Composite Post on Bond Strength and Microleakage



Dominika Makarewicz, Anna-Maria B Le Bell-Rönnlöf* , Lippo V.J. Lassila , Pekka K. Vallittu
Department of Biomaterials Science, Institute of Dentistry and BioCity Turku Biomaterials Research Program, University of Turku, FI-20520, Turku, Finland


Article Metrics

CrossRef Citations:
16
Total Statistics:

Full-Text HTML Views: 434
Abstract HTML Views: 129
PDF Downloads: 63
Total Views/Downloads: 626
Unique Statistics:

Full-Text HTML Views: 201
Abstract HTML Views: 100
PDF Downloads: 56
Total Views/Downloads: 357



Creative Commons License
© Makarewicz et al.; Licensee Bentham Open.

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

* Address correspondence to this author at the Department of Biomaterials Science, Institute of Dentistry and BioCity Turku Biomaterials Research Program, University of Turku, FI-20520 Turku, Finland; Tel: +358 2 333 8297; Fax: +358 2 333 8390; E-mail: ami.lebell@utu.fi


Abstract

Objectives:

The aim of this study was to evaluate the effect of two different cementation techniques of individually formed E-glass fiber-reinforced composite (FRC) post on bond strength and microleakage.

Methods:

The crowns of extracted third molars were removed and post preparation was carried out with parapost drills (diameter 1.5 mm). After application of bonding agents individually formed FRC posts (everStick POST, diameter 1.5 mm) were cemented into the post spaces with either ParaCem®Universal or self-adhesive RelyX™Unicem, using two different cementation techniques: 1) an “indirect (traditional) technique” where the post was prepolymerized prior application of luting cement and insertion into the post space or 2) a “direct technique” where the uncured post was inserted to the post space with luting cement and light-polymerized in situ at the same time. After water storage of 48 hours, the roots (n = 10/group) were cut into discs of thickness of 2 mm. A push-out force was applied until specimen fracture or loosening of the post. A microleakage test was carried out on roots which were not subjected to the loading test (n= 32) to evaluate the sealing capacity of the post-canal interface. The microleakage was measured using dye penetration depth under a stereomicroscope.

Results:

Higher bond strength values (p<0.05) and less microleakage (p<0.05) were obtained with the “direct technique” compared to the “indirect technique”. None of the FRC posts revealed any dye penetration between the post and the cement.

Conclusions:

The “direct technique” seems to be beneficial when cementing individually formed FRC posts.

Keywords: Bond strength, Cementation technique, Custom-made fiber post, Dye penetration, Fiber-reinforced composite root canal post, Individually formed fiber post, Microleakage, Push-out force.