RESEARCH ARTICLE


Effect of Nickel Chloride on Cell Proliferation



Vincenzo D’Antò 1, Rosa Valletta 1, Massimo Amato 2, Helmut Schweikl 3, Michele Simeone 1, Sergio Paduano 4, Sandro Rengo 1, Gianrico Spagnuolo 1, *
1 Department of Oral and Maxillofacial Sciences, University of Naples “Federico II”, Napoli, Italy
2 Medical School, University of Salerno, Salerno, Italy
3 Department of Operative Dentistry and Periodontology, University of Regensburg, D-93042 Regensburg, Germany
4 School of Dentistry, University of Catanzaro “Magna Graecia”, Catanzaro, Italy


Article Metrics

CrossRef Citations:
0
Total Statistics:

Full-Text HTML Views: 2428
Abstract HTML Views: 1457
PDF Downloads: 408
Total Views/Downloads: 4293
Unique Statistics:

Full-Text HTML Views: 1259
Abstract HTML Views: 871
PDF Downloads: 265
Total Views/Downloads: 2395



Creative Commons License
© D’Antò et al.; Licensee Bentham Open.

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

* Address correspondence to this author at the Department of Oral and Maxillofacial Sciences, University of Naples ‘Federico II’, Napoli, Italy Tel: +390817462080; Fax: +390817462080; E-mail: gspagnuo@unina.it


Abstract

Objective:

Metal alloys used in dentistry and in other biomedical fields may release nickel ions in the oral environment. The release of nickel might influence the normal biological and physiological processes, including tissue wound healing, cell growth and proliferation. The aim of this study was to evaluate in vitro the effects of nickel ions on cell cycle, viability and proliferation.

Materials and Methods:

Human osteosarcoma cells (U2OS) and human keratinocytes (HaCat) were exposed to different nickel chloride (NiCl2) concentrations (0 - 5mM) for various periods exposure. The viability of cultured cells was estimated by flow cytometry using Annexin V-FITC and Propidium Iodide (PI). Cell proliferation was evaluated by using carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) and flow cytometry. Finally, the effects of NiCl2 on cell cycle were assessed and quantified by flow cytometry. Statistical analysis was performed by means of ANOVA followed by Tukey’s test.

Results:

NiCl2 induced a dose and time dependent decrease in cell viability. After 24h, 1mM NiCl2 caused a similar and significant reduction of viability in U2OS and HaCat cells, while higher NiCl2 concentrations and longer exposure times showed a reduced cytotoxic effect in HaCat as compared to U2OS cells.

Exposure to NiCl2 caused a dose- and time-dependent inhibition of cell proliferation in both cell lines tested, with a prominent effect on U2OS cells. Furthermore, both cell lines exposed to NiCl2 exhibited significant changes in cell cycle distribution after 24h exposure 2mM NiCl2, as compared to untreated cells (p<0.05).

Conclusion:

Our results indicate that release of nickel ions may affect cell proliferation. The inhibition of cell growth by NiCl2 is mediated by both cell cycle arrest and by induction of cell death.

Keywords: Nickel, Orthodontic appliances, Biocompatibility, NiCl2, U2OS, HaCat.