RESEARCH ARTICLE
In Vitro Evaluation of Enterococcus faecalis Adhesion on Various Endodontic Medicaments
Gloria Denotti1, Rosaria Piga1, Caterina Montaldo1, Matteo Erriu1, Francesca Pilia1, Alessandra Piras1, Massimo De Luca2, Germano Orrù1, *
Article Information
Identifiers and Pagination:
Year: 2009Volume: 3
First Page: 120
Last Page: 124
Publisher ID: TODENTJ-3-120
DOI: 10.2174/1874210600903010120
Article History:
Received Date: 14/10/2008Revision Received Date: 12/1/2009
Acceptance Date: 3/4/2009
Electronic publication date: 9/6/2009
Collection year: 2009

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
Abstract
E. faecalis in endodontic infection represents a biofilm type of disease, which explains the bacteria’s resistance to various antimicrobial compounds and the subsequent failure after endodontic treatment. The purpose of this study was to compare antimicrobial activities and bacteria kinetic adhesion in vitro for three endodontic medicaments with a clinical isolate of E. faecalis. We devised a shake culture which contained the following intracanalar preparations: CPD, Endoidrox (EIX), PulpCanalSealer (PCS); these were immersed in a liquid culture medium inoculated with the microorganism. The shake system velocity was able to prevent non-specific bacteria adhesion and simulated the salivary flow. Specimens were collected daily (from both the medium and medicaments) for 10 days; the viable cells were counted by plate count, while the adhesion index AI° [E. faecalis fg DNA] /mm2 was evaluated in the pastes after DNA extraction, by quantitative real time PCR for the 16S rRNA gene. A partial growth inhibition, during the first 24 hours, was observed in the liquid medium and on the medicaments for EIX and subsequently for CPD (six logs). EIX showed the lowest adhesion coefficient (5*102 [fg DNA]/mm2) for nine days and was similar to the control. PCS showed no antimicrobial/antibiofilm properties. This showed that “calcium oxide” base compounds could be active against biofilm progression and at least in the short term (2-4 days) on E. faecalis cells growing in planktonic cultures.