RESEARCH ARTICLE
Digital Dynamic 3D Monitoring of Lower Incisors Intrusion in Lingual Orthodontics
Elia Kodjo Chardey1, Rosamaria Fastuca2, *, Matteo Beretta1, Alberto Di Blasio3, Nicolò Vercellini1, Alberto Caprioglio4, Piero Antonio Zecca5, Aldo Macchi1
Article Information
Identifiers and Pagination:
Year: 2018Volume: 12
Issue: Suppl-1, M7
First Page: 104
Last Page: 117
Publisher ID: TODENTJ-12-104
DOI: 10.2174/1874210601812010104
Article History:
Received Date: 17/11/2017Revision Received Date: 20/12/2017
Acceptance Date: 05/01/2018
Electronic publication date: 31/01/2018
Collection year: 2018

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: (https://creativecommons.org/licenses/by/4.0/legalcode). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Objective:
The aim of the present study is to propose a 3-dimensional evaluation of lower intrusion obtained with lingual orthodontics considering not only the crowns but also dental roots.
Methods:
9 adult patients underwent fixed lingual orthodontic treatment with i-TTя lingual brackets system for the correction of crowding in the lower arch associated with a deep overbite. Initial records, consisting of photos, CBCTs and intraoral scans were collected. Threshold segmentation of the CBCT was performed to generate a three-dimensional virtual model of each the teeth of the lower arch, superimposed with the crown of the same teeth obtained by intraoral scan models to generate a complete set of digital composite lower arch The same procedure was performed to monitor one key step of the i-TTЯ technique consisting in lower incisors intrusion (T2). T1-T2 three-dimensional superimposition and color displacement maps were generated to measure and evaluate the movements obtained at the lower arch.
Results:
The root displacement of the incisors during their intrusion in the early stage was totally “bone-safe” in the 88.9% (8 of 9) of the cases observed. No significant extrusion of the premolars used as anchorage unit was measured.
Conclusion:
This method has proved to be an accurate and reliable approach to dynamically visualize the 3-dimensional positions of the teeth, including their roots, with no additional radiation for in-progress treatment monitoring. The 3-dimensional evaluation showed that the employed lingual appliance allowed to obtain significant lower incisors intrusion with negligible undesired extrusion of premolars employed as anchorage teeth.