Abstract

This pilot study compared impact strain at the core and root surfaces between two different post-core systems.

Materials and Methods:

The form of a bovine mandibular front tooth was modified to resemble that of a human maxillary incisor as a test specimen. A cast post and core (Metal PC) and composite resin and glass fiber-reinforced epoxy resin post (Fiber-Resin PC) system were tested. Four gauges were affixed to the buccal and lingual surfaces of the core and root. The specimens were then embedded in a metal mold using dental stone. A pendulum-type device with a pyramid-shaped metal impact object with a titanium alloy head was used to provide 2 different shock forces. Maximum distortion was measured and analyzed.

Results:

Distortion at the core at each measurement point and total amount of distortion with Fiber-Resin PC was significantly greater (p<0.05) than that with Metal PC against both impact forces. On the other hand, distortion at the root at the buccal measurement point with Fiber-Resin PC was significantly less than that with Metal PC against both impact forces. Total distortion was significantly less with Fiber-Resin PC than that with Metal PC against the greater impact shock. Acceleration with Fiber-Resin PC was significantly less than that with Metal PC against both impact forces.

Conclusion:

Fiber-Resin PC has the potential to protect remaining root against traumatic force. This suggests that a Fiber-Resin PC is more suitable for non-vital teeth against not only occlusal but also traumatic impact force.

Keywords: : Acceleration, distortion, glass fiber-reinforced epoxy resin post, impact force, post-core system, root.
Fulltext HTML PDF
1800
1801
1802
1803
1804