RESEARCH ARTICLE


The Influence of Post Bleaching Treatments in Stain Absorption and Microhardness



Horieh Moosavi*, Fatemeh Darvishzadeh
Dental Materials Research Center, Department of Operative Dentistry, Mashhad Dental School, Mashhad University of Medical Sciences, Mashhad, Iran.
Department of Operative Dentistry, Zahedan Dental School, Zahedan University of Medical Sciences, Zahedan, Iran.


Article Metrics

CrossRef Citations:
11
Total Statistics:

Full-Text HTML Views: 226
Abstract HTML Views: 73
PDF Downloads: 37
ePub Downloads: 16
Total Views/Downloads: 352
Unique Statistics:

Full-Text HTML Views: 121
Abstract HTML Views: 60
PDF Downloads: 30
ePub Downloads: 16
Total Views/Downloads: 227



Creative Commons License
© Moosavi and Darvishzadeh ; Licensee Bentham Open.

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

* Address correspondence to this author at the Dental Materials Research Center, Department of Operative Dentistry, Mashhad Dental School, Mashhad University of Medical Sciences, Mashhad, Iran; Tel: 989155088028; Fax: 985118829500; E-mail: moosavih@mums.ac.ir


Abstract

Objectives:

This study investigated the effects of post bleaching treatments to prevent restaining and the change of enamel surface microhardness after dental bleaching in vitro.

Methods:

Sixty intact human incisor teeth were stained in tea solution and randomly assigned into four groups (n=15). Then samples were bleached for two weeks (8 hours daily) by 15% carbamide peroxide. Tooth color was determined both with a spectrophotometer and visually before bleaching (T1) and immediately after bleaching (T2). Next, it was applied in group 1 fluoride (Naf 2%) gel for 2 minutes, and in group 2 a fractional CO2 laser (10 mJ, 200 Hz, 10 s), and in group 3, nanohydroxyapatite gel for 2 minutes. The bleached teeth in group 4 remained untreated (control group). Then teeth placed in tea solution again. Color examinations were repeated after various post bleaching treatments (T3) and restaining with tea (T4) and color change values recorded. The microhardness was measured at the enamel surface of samples. Data was analyzed using ANOVA, Tukey HSD test and Dunnett T3 (α = 0.05).

Results:

Directly after bleaching (ΔE T3-T2), the treatment with nanohydroxyapatite showed significantly the least color lapse in colorimetric evaluation. In experimental groups, the color change between T3 and T4 stages (ΔE T4-T3) was significantly lower than control group (P < 0.05). Different methods of enamel treatment caused a significant increase in surface microhardness compared to control group (P < 0.05).

Significance:

Application of fluoride, fractional CO2 laser and nanohydroxyapatite as post bleaching treatments are suggested for prevention of stain absorption and increasing the hardening of bleached enamel.

Keywords: Bleaching, enamel, fluoride, laser CO2, microhardness, nanohydroxy apatite..