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Abstract: Objectives: This study aims at analyzing the changes in gingival crevicular fluid (GCF) lactate dehydrogenase 
(LDH) activity during orthodontic movement. 

Methods: Twenty patients all requiring first premolar extractions were selected and treated with conventional straight wire 
mechanotherapy. Canine retraction was done using 125 g Nitinol closed coil springs. The maxillary canine on one side 
served as the experimental site while the contralateral canine served as the control. GCF was collected from the canines 
before initiation of retraction, then 1 hour after initiating canine retraction, followed by 1 day, 7 days, 14 days and 21 
days. GCF LDH levels were estimated and compared with the control site. 

Results: The results revealed significantly higher LDH levels on the 7th, 14th and 21st day at the sites where orthodontic 
force had been applied. The levels also showed a significant increase from 0 hour to the 21st day. Peak levels were seen on 
14th and 21st day following initiation of retraction. 

Conclusions: The study showed that LDH could be successfully estimated in the GCF and its increased levels could  
indicate active tooth movement, which could aid the clinician in monitoring active orthodontic tooth movement. 

Keywords: Lactate dehydrogenase, diagnostic indicator, gingival crevicular fluid, orthodontic tooth movement, canine  
retraction. 

INTRODUCTION 

Tooth movement during orthodontic treatment is charac-
terized by remodeling changes seen in the dental and perio-
dontal tissues, including dental pulp, periodontal ligament, 
alveolar bone, and gingiva. These force-induced strains alter 
the vascularity and blood flow in the periodontal ligaments, 
resulting in local synthesis and the release of various key 
molecules, such as neurotransmitters, cytokines, growth fac-
tors, colony-stimulating factors, and arachidonic acid me-
tabolites [1]. These molecules can induce several cellular 
responses by various cell types in and around the teeth, pro-
viding a favorable microenvironment for tissue deposition or 
resorption [2, 3]. The biomechanical principles of tooth 
movement during orthodontic treatment have been exten-
sively described [4, 5]. These are supported by several stud-
ies that have evaluated periodontal changes subsequent to 
orthodontic tooth movement [6-8]. 

Gingival crevicular fluid (GCF) arises at the gingival margin 
and is otherwise termed transudate or exudate. The flow rate 
is related to the degree of gingival inflammation, and a rate 
of 0.05 to 0.20 L per minute was reported during minimal 
inflammation. Several studies have been performed 
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on the composition of gingival crevicular fluid and the 
changes seen during orthodontic tooth movement [9, 10].  

The mechanism of bone remodeling during orthodontic 
treatment is associated with the release of inflammatory  
mediators, such as prostaglandin-E2 and interleukin 1-  [11]. 
Neuropeptides such as substance P and Interleukin-1  which 
are produced mainly by activated monocytes, initiate bone 
resorption [12, 13] either by activating osteoclasts or by 
stimulating the synthesis of prostaglandin-E2 [7, 14]. Force 
applied to a tooth is known to cause the periodontal tissues 
to experience either tension or compression stress, depending 
on the tooth movement [15, 16]. A variety of substances  
involved in the bone remodeling process are diffused into the 
gingival crevicular fluid [1, 11, 17-19]. Therefore, gingival 
crevicular fluid sample analysis could help in understanding 
the ongoing biochemical processes associated with bone 
turnover during orthodontic tooth movement [6, 9, 11, 20-
22]. 

Lactate Dehydrogenase (LDH), an enzyme normally  
limited to the cell cytoplasm, is released extracellularly only 
after cell death [23]. Earlier studies have demonstrated that 
lactate dehydrogenase activity in gingival crevicular fluid is 
significantly related to gingival inflammation [24] and 
periodontal tissue destruction. [25]. Therefore, lactate  
dehydrogenase activity in the gingival crevicular fluid has 
been proposed as a potential marker for monitoring perio-
dontal metabolism. Increased lactate dehydrogenase activity 
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in the gingival crevicular fluid can be hypothesized during 
orthodontic tooth movement [3]. Earlier studies have sug-
gested a correlation of the LDH levels in GCF during ortho-
dontic treatment [19, 26].  

GCF component analysis is a noninvasive method to 
study the cellular response of the underlying periodontal 
ligament during orthodontic treatment [27]. Limited data is 
currently available on GCF LDH and warrants further re-
search to establish a sensitive marker which can be used as a 
noninvasive chair-side test. Hence, the present study has 
been undertaken to assess the LDH levels in the crevicular 
fluid of patients undergoing orthodontic treatment. 

MATERIALS AND METHODS 

Study Population 

A sample of 20 subjects (10 males and 10 females), age 
range 15 to 25 years, requiring orthodontic treatment was 
taken for this study. All subjects had Angle’s Class I maloc-
clusion with bimaxillary dentoalveolar protrusion and pro-
clination with minimal or no crowding. They all required 
extraction of all the four first premolar teeth as part of their 
orthodontic treatment. Treatment plan constituted fixed or-
thodontic therapy with extraction of the first bicuspids, fol-
lowed by individual canine retraction, and maximum an-
chorage conservation, space closure, finishing and detailing 
and a fixed lingual retainer. The protocol of this study was 
reviewed and formally approved by the Ethical Committee at 
the College of Dentistry, King Saud University, Riyadh. In-
formed consent was also obtained from each subject, after 
explaining the nature of the study. 

The subjects selected had neither oral nor systemic dis-
eases, had no periodontal pockets, and had not been on any 
antibiotic therapy for at least three months prior to the com-
mencement of the study. The subjects were agreed to strictly 
adhere to the investigator’s instructions on oral hygiene and 
were willing to follow the prescribed oral hygiene program 
and orthodontic treatment.  

Orthodontic Treatment 

All patients were treated with conventional straight wire 
(0.022 x 0.028) mechanotherapy (Discovery® brackets, Den-
taurum, Ispringen, Germany). After leveling and alignment, 
the retraction of the canine was initiated on a base wire of 
0.019 x 0.025" Stainless Steel preformed standard arch shape 
(Arch wires®, 3M Unitek, Monrovia, California, USA). Ca-
nine retraction was performed, on one side randomly chosen 
using Nitinol closed coil spring (9 mm) exerting 125 g of 
constant force (Nitinol closed coil spring®, 3M Unitek, 
Monrovia, California, USA). The canine on the opposite 
side, served as the control and no orthodontic force was ap-
plied. 

Periodontal Examination  

Scaling was done two weeks prior to sample collection. 
All patients complied with strict oral hygiene instructions to 
rinse twice daily with 0.5 ounces ml of 0.2% chlorhexidine 
gluconate throughout the study period and to brush their 
teeth at least two times a day using a tooth brush and tooth 
paste. Periodic recall were performed to evaluate oral hy-

giene levels. Patients were instructed to avoid all medica-
tions or drugs including nonsteroidal antiinflammatory drugs 
during the study period. Subjects who strictly adhered to the 
oral hygiene regime were included in the study, after pre-
liminarily monitoring the patients for six weeks prior to the 
treatment. The periodontal condition was periodically as-
sessed throughout the study period, by monitoring the plaque 
and gingival bleeding. 

Gingival Crevicular Fluid Collection 

Gingival crevicular fluid (GCF) samples were collected 
using the method employed by Lamster et al. [28]. The indi-
vidual crevicular sites were isolated with cotton rolls and 
gently air dried. Then six pre-cut methylcellulose filter pe-
riopaper strips® were inserted into the crevice at the mesio-
labial line angle, mid-labial surface, disto-labial line angle, 
disto-palatal line angle, mid-palatal surface and mesio-
palatal line angle until mild resistance was felt. These were 
left in place for 60 seconds in continued isolation. Next, the 
six strips were immediately placed in individual sealed plas-
tic tubes (Cryotube®, 2.0 mL, NUNC, Roskilde, Denmark) 
and snap frozen at –80°C until further processing was per-
formed. 

The gingival crevicular fluid was collected by periopaper 
strips (Periopaper strips®, ProFlow Inc., Amityville, NY, 
USA) from the maxillary canines prior to canine retraction, 
after initiating canine retraction, 1 hour , 1 day , 7 days , 14 
days and 21 days. 

GCF Lactate Dehydrogenase Assay 

The gingival crevicular fluid lactate dehydrogenase activ-
ity was spectrophotometrically determined [24]. The paper 
strips were incubated for 5 minutes in a substrate of 16.2 
mmol/L pyruvate, 0.194 mmol/L reduced nicotinamide ade-
nine dinucleotide (NADH), 54.0 mmol/L phosphate buffer 
(pH 7.5 ± 0.1 at 30°C), in a total volume of 1.0 ml. In the 
presence of lactate dehydrogenase, pyruvate is reduced to L-
lactate with the simultaneous oxidation of NADH. The rate 
of decrease in absorbance at 340 nm, representing the 
NADH consumed, is directly proportionate to the lactate 
dehydrogenase activity in the sample. For the 1 cm path 
length used, a value of 6.22 was considered as the NADH 
millimolar absorptivity. Results were first converted into 
enzyme activity units (1 unit = 1 mol of NAD+ released per 
minute at 30°C) and finally expressed as total lactate 
dehydrogenase activity ( mol units/L) per sample.  

Statistical Analyses 

All statistical analyses were performed with GraphPad® 
Instat 3.05 software (GraphPad Software Inc, San Diego, 
CA, USA). LDH levels at different time intervals were com-
pared and analyzed using ANOVA. We used a 95% confi-
dence interval assuming that there was a significant differ-
ence when the P-value was found to be less than 0.05. 

RESULTS 

The gingival crevicular fluid lactate dehydrogenase level 
is shown in Fig. (1). In the control site the LDH levels varied 
from 96.05 at 0 hour to 119.50 on the 21st day. At the ex-
perimental site where tooth movement occurred, signifi-
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cantly higher LDH levels from the 7th day onwards until 21st 
day were noted. The lactate dehydrogenase level increased 
with time in the experiment site from 0 hour to 21 days; from 
99.00 ± 32.47 to 343.75 ± 35.76 mol/L. Using the non-
parametric Friedman test for several related samples to test 
for any statistical significant difference within either the con-
trol or experiment site at different points in time, a statisti-
cally significant difference was found only in the experiment 
site from 7, 14 and 21 days.  

DISCUSSION 

The bone remodeling that occurs during orthodontic 
tooth movement is a biologic process involving an acute 
inflammatory response in the periodontal tissues. The se-
quence characterized by periods of activation, resorption, 
reversal, and formation has been recently described as occur-
ring in both tension and compression tooth sites during or-
thodontic tooth movement [29]. In Orthodontics, mechanical 
stress appears to evoke biochemical and structural responses 
in a variety of cell types in vivo as well as in vitro [11, 30, 
31]. The early phase of orthodontic tooth movement involves 
an acute inflammatory response, distinguished by periodon-
tal vasodilation and leukocyte migration from the periodon-
tal ligament capillaries [3]. The mechanism of bone resorp-
tion could also be related to the release of inflammatory me-
diators found in the gingival crevicular fluid [11]. 

Orthodontic tooth movement induces a biological process 
leading to bone resorption in the pressure sites and bone 
deposition in tension sites [16, 32]. Histological studies 
showed that first a wave of resorption occurred in 3 to 5 days 
followed by its reversal in 5 to 7 days. This is followed by a 
late wave of bone formation between 7 and 14 days [33, 34].  

Lactate dehydrogenase, an enzyme normally limited to 
the cytoplasm of cells, which is released extracellularly only 
after cell death, is related to cell necrosis and tissue break-

down. Studies have demonstrated that the LDH activity in 
gingival crevicular fluid is significantly related to gingival 
inflammation and tissue destruction [24, 35] Therefore, lac-
tate dehydrogenase activity in the gingival crevicular fluid 
has been recognized as a potential marker for monitoring 
periodontal metabolism [25]. 

Lactate dehydrogenase identified as a tissue destruction 
indicator, signals an increase in LDH during orthodontic 
tooth movement due to changes in the periodontal ligament 
[16, 25]. Currently, only a few studies have explored the 
gingival crevicular fluid LDH levels during orthodontic 
tooth movement [19, 26]. These studies have revealed prom-
ising results and indicated that the gingival crevicular fluid 
levels of lactate dehydrogenase could reflect the biologic 
activity in the periodontium during orthodontic tooth move-
ment.  

The observations of this study showed increased LDH 
levels at the site where orthodontic force was applied com-
pared to the contralateral control site. The lactate dehydro-
genase levels showed a steady increase with time i.e. from 0 
day to 21 days. The significant increase in the gingival 
crevicular fluid lactate dehydrogenase activity at the test site 
concurs with the earlier reports [19, 26], although the present 
study does not distinguish between compression and tension 
sites. 

Reitan [15] described three distinct processes in perio-
dontal tissue by orthodontic forces. The first is characterized 
by tissue deformation. In the second phase, the appropriate 
cells establish a microenvironment that allows for correct 
tissue modeling and remodeling. The last phase represents 
tissue turnover, to allow a reduction in the applied strain, 
which terminates in appliance deactivation. This increase in 
the lactate dehydrogenase during orthodontic treatment is 
attributed to periodontal changes such as tissue resorption or 
destruction [34, 36]. In the periodontal ligament, hyaliniza-

 
Fig. (1). Gingival crevicular fluid lactate dehydrogenase level ( mol/L) in the control and experiment sites (values are mean ±SEM). 
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tion of the most compressed area induced by compressive 
forces has been reported [3]. This hyaline zone is described 
as an area of focal aseptic necrosis [16] persisting in the 
pressure zone, that resists degradation, depending on the 
magnitude of the force [15] that resists degradation, persists 
in the pressure zone, and depends on the magnitude of the 
force [15]. A study conducted on a rat model showed cyto-
plasmic enzymes such as lactate dehydrogenase in this ex-
tracellular environment [36]. 

This study revealed that lactate dehydrogenase enzyme 
activity could be successfully estimated in the gingival 
crevicular fluid. The gingival crevicular fluid lactate dehy-
drogenase enzyme showed a steady increase during ortho-
dontic tooth movement with a statistically significant in-
crease on the 7th, 14th and 21st days compared with the con-
trol site as well, with the initiation of the tooth movement. 
From the observations made in this study, it can be con-
cluded that an estimation of gingival crevicular fluid LDH 
levels can be used as an indicator to monitor active ortho-
dontic tooth movement. Further research and new techniques 
may assist in developing more sensitive and reliable markers 
that can be used as chairside test in orthodontic practice. 
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