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Abstract: Craniofacial growth is a scientific crossroad for the fundamental mechanisms of musculoskeletal physiology. 

Better understanding of growth and development will provide new insights into repair, regeneration and adaptation to ap-

plied loads. Traditional craniofacial growth concepts are insufficient to explain the dynamics of airway/vocal tract devel-

opment, cranial rotation, basicranial flexion and the role of the cranial base in expression of facial proportions. A testable 

hypothesis is needed to explore the physiological pressure propelling midface growth and the role of neural factors in ex-

pression of musculoskeletal adaptation after the cessation of anterior cranial base growth. 

A novel model for craniofacial growth is proposed for: 1. brain growth and craniofacial adaptation up to the age of 20; 2. 

explaining growth force vectors; 3. defining the role of muscle plasticity as a conduit for craniofacial growth forces; and 

4. describing the effect of cranial rotation in the expression of facial form.  

Growth of the viscerocranium is believed to be influenced by the superficial musculoaponeurotic systems (SMAS) of the 

head through residual tension in the occipitofrontalis muscle as a result of cephalad brain growth and cranial rotation. The 

coordinated effects of the regional SMAS develop a craniofacial musculoaponeurotic system (CFMAS), which is believed 

to affect maxillary and mandibular development. 
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INTRODUCTION  

 The soft tissue matrix, in which skeletal elements are 
embedded, is the primary determinant of growth, while both 
the bone and cartilage are secondary growth sites. Growth 
centers display inherent growth versus growth sites which 
are reactive [1,2]. 

 This is the fundamental premise of the Functional Matrix 
Theory of Melvin Moss [3]. The soft tissue matrix (muscles, 
connective tissue, neural tissue) models the bone, rather than 
bone morphology being genetically determined. 

 Proposed is a descriptive model of craniofacial growth 
based on the principle that late brain growth and cranial rota-
tion create a residual tension in the occipitofrontalis muscles 
which in turn loads the facial superficial musculoaponeurotic 
systems (SMAS) via connected fascia, muscle and ligaments 
and reflect a craniofacial musculoaponeurotic system 
(CFMAS). 

PURPOSE 

 The purpose of this review is to provide a comparative, 
biologically accurate and clinically effective framework for 
understanding [4] the coordination of brain and craniofacial 
growth (CFG), and the relationship of brain growth to cranial 
rotation, airway and vocal development. There is a strong 
belief that the musculoaponeurotic system of the skull has a 
direct effect on maxillary and mandibular development, and  
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forms the underlying theme of the proposed aponeurotic ten-
sion model of craniofacial growth.  

TRADITIONAL CONCEPTS 

 Moss introduced the functional matrix theory describing 
skeletal growth as a secondary, compensatory, and mechani-
cally obligatory response to temporally and morphogeneti-
cally prior growth changes in specially related tissues and 
organs [5-7]. A solitary growth matrix for the entire head is 
difficult to explain, therefore Moss divided the head into 
areas (capsular matrices) such as the neurocranial capsular 
matrix and the orofacial capsular matrix [8], the latter being 
comprised of the teeth, sinus spaces, muscles and connective 
tissue (blood vessels, etc...). Neurocranial capsular matrix 
enlargement resulting from neural growth seems self-
evident. However, the nature of the orofacial capsular matrix 
growth is more elusive. It is believed that the orofacial  
capsular matrix enlargement is driven by airway enlargement 
and that the direction of this facial growth is caudad and  
ventral (Fig. 1). 

 The nasal septum model of Scott [9] describes the nasal 
septum as a growth center forcing the viscerocranium caudad 
and ventral relative to the cranial base until the facial sutures 
have become stabilized by dense connective tissue [9,10]. 
The nasal septum directs prenatal and some postnatal growth 
to the approximate age of 4 years, [4] but the brain is be-
lieved to be the primary growth center for CFG until ap-
proximately the age of 8 [11]. After neural growth is com-
plete, the more inferior portions of the anterior cranial base 
(ACB) are considered to continue “growing” caudad and  
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ventral, causing drift and displacement of the ethmomaxil-
lary (midface) complex [11-13] in conjunction with growth 
at the sphenooccipital synchondrosis (SOS: a hyaline carti-
lage growth center between the clivus of the occipital bone 
and sphenoid bone) [13]. The anteroposterior force of the 
SOS displacement is believed by some to be transmitted 
through the nasal septum acting as a strut connecting to the 
midface [4,13,14]. Alternatively, the advancement of the 
midface could be a result of physical growth forces of  
enclosing soft tissues. For example, displacement of facial 
sutures could result from the enlargement of muscles, [13] or 
from growth of the brain temporal lobe, infraorbital and 
retromaxillary fat pads, and infratemporal fossa contents 
(pterygoid muscles, fat pads) creating a laterally transmitted 
force to the midface [11,15]. 

 The facial tissues have previously been described by 
Houston [16] and Solow [17] (Fig. 1), as influencing facial 
growth but from the aspect of growth restriction and postural 
change through soft tissue forces by facial application of a 
dorsally directed force to the underlying skeletal structures. 
The Servosystem model of Petrovic [18] assumes the dis-

placement of the midface through nasal septum growth in 
conjunction with direct thrust of labionarinary muscles, and 
through the superior labial frenum and septopremaxillary 
ligament [19]. As the maxilla is moved ventrally there is 
believed to be compensation maintaining the mandibular 
relationship to the maxilla.  

  Although each of the models has added to our attempt at 
understanding CFG, none of the CFG models seem to  
directly neither address nor provide a model for the differing 
patterns of maxillomandibular rotation in hypo- and hy-
perdivergent individuals as described by Bjork [20,21]. 
There are inconsistencies found in earlier theories that are 
believed more effectively addressed with the proposed CFG 
model. The proposed model explains why the airway en-
larges sagittally, despite a backward slide of the vomer bet- 
ween infancy and adulthood [11]. If it were the only issue, 
the relative descent of the larynx would be plausible with 
traditional caudad and ventral CFG model as there is signifi-
cant growth of the cervical vertebrae, for which the heights 
of the vertebrae roughly double by growth at their respective 
epiphyseal plates [22]. However, Houston’s cervical growth 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). (A) Displayed is the ventral and caudad growth direction of the ethmomaxillary complex Illustration from [1]. (B) Houston [16] 

combined his CFG model based on cervical vertebrae growth, with (C) the soft-tissue stretching of Solow [17] and cranial posture changes 

[114]. Illustrations from [16, 17]. Houston’s model cannot explain forward/counter-clockwise mandibular rotation. (D) An anatomical draw-

ing of the aponeurotic tension model of craniofacial growth. Shown are: the force of gravity (black arrows) and CFMAS tension (white ar-

rows); the frontalis muscle (frontalis), the occipitalis muscle (occipitalis) and the area between is the location of the galea aponeurotica 

(aponeurosis). The modiolus (muscular confluence joining the upper portion of the muscle mask with the lower portion) is found vertically 
between the black arrows overlying the cheek and chin. Illustration adapted from [115].  
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model [16] cannot explain forward mandibular rotation as 
the tissue are oriented to provide a dorso-caudad force. 

 Also, the maxilla is believed to display “growth” at the 
maxillary tuberosity causing pressure against the pterygoid 
plate of the sphenoid bone. This pressure is believed to dis-
place the maxilla forward. However, between the pterygoid 
plate and maxilla there is a fibrous suture rather than syn-
chondrosis. Compression in sutures has been shown to dis-
play resorption [23-25] and the bone (pterygoid plates) in the 
area is much too pliable in that environment to withstand the 
pressures [26]. The lack of inherent growth potential of  
sutures negates any ventral thrust of midface growth by the 
circumaxillary suture system [2,4,14]. The viscerocranial 
units (maxilla, mandible) seem suspended in CFMAS rela-
tive to cranial rotation concomitant with allometric brain 
growth. Further investigation of the degree of viscerocranial 
suspension by the CFMAS relative to elastic fiber and colla-
gen fiber resistance within the suture itself seems warranted. 

  The relative fixed position of the zygomatic processes as 
the remainder of the maxilla is thrust forward is assumed to 
be a result of maxillary resorption anteriorly and deposition 
posteriorly [26]. Problematic is that the anterior resorption is 
superficial as the anterior surface displays stability relative to 
endosseous implants. Essentially, all of the increase in max-
illary length occurs posteriorly [27-29]. Considering the 
limitations of microscopic histology, this process requires 
further study with intravital markers [30]. Cranial rotation 
better explains the observed pattern of surface resorption 
anteriorly due to pressure applied by CFMAS weight to the 
anterior region during the rotation. Surface resorption is cre-
ated as bone advances into the drape of the CFMAS pressure 
which is created on the anterior bone leading to collapse of 
the vasculature, stimulating compensatory modeling. Depo-
sition posteriorly is stimulated by tension created within the 
suture by cranial rotation and the associated force of the 
CFMAS. Cranial rotation and the facial block concept [12, 
31] would rectify the conflict of Bjork’s observations dis-
playing a stable zygomatic surface relative to implants [27], 
while Enlow believed the zygoma relocated dorsally  [13]. 
Both were correct. The rotation of the maxilla relative to the 
zygoma would display a stable zygoma surface relative to an 
implant, while slight surface resorption of the zygoma would 
be observed due to pressure of the facial muscle mask. The  
rotation of the maxilla would be displaced forward relative 
to the zygoma leading to the conclusion that the zygoma 
must be posteriorly displaced with growth. This also  
explains the observation that the mandible growth rotation is 
greater that maxillary growth rotation; at the same time, the 
mandible is also rotating around the maxilla [32]. 

ALTERNATIVE MODEL INTRODUCED TO SUP-
PLEMENT THE CURRENT UNDERSTANDING OF 

CRANIOFACIAL GROWTH IN MAN 

 Proposed is an alternative model of CFG based on mus-
culoaponeurotic tension enveloping the head. This CFG 
model describes the affect of late cephalad growth of the 
brain pushing on the occipitofrontalis muscle (Figs. 1 and 2), 
which places the muscles in tension, the peak in temporal 
and occipital lobe gray matter being at 16-20 of years age 
[33]. The tension force is transmitted from the occipitofron-
talis muscles down through the mask of muscles overlying 

the face due to individual muscle fiber blending with adja-
cent muscles and the associated superficial musculoaponeu-
rotic systems (SMAS; investing connective tissues) [34-40]. 
This facial muscle mask and associated regional SMAS are 
believed to be part of a CFMAS important in directing cra-
niofacial development and jaw rotation by acting as a con-
duit for the brain derived force. Cranial rotation [12, 41] is 
also believed to occur sagittally around the atlantooccipital 
joint as a result of allometric brain growth and progressive 
facial bone pneumatization with sinus development. 

 Brain extension consists of uprighting of the cerebral 
portion of the brain, and therefore also the head, relative to 
the body axis during growth and development. This pattern 
is mimicked by cranial base (basicranial) flexure [12, 41] 
and airorhynchy (posterior and upper portions of the face 
rotate dorsally relative to the posterior cranial base by exten-
sion of the ACB relative to the posterior cranial base (PCB), 
analogous with the “facial block”) [12] (Fig. 3). Cranial rota-
tion being intimately integrated with the latter, the term cra-
nial rotation will be used collectively for them from this 
point. It is possible that the proposed model applies to only 
humans as it seems coordinated with cranial base flexion 
during growth which is unique to humans [12]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Algorithmic adaptation of the proposed CFG model. Dis-

played is brain growth modulation of cranial rotation and CFMAS 

tension. Brain growth can display temporal regional growth and 

mylenization with normal development and as a result of trauma 

(concussion, drug use). Cranial rotation modulates CFMAS tension 

and itself is influenced by brain development and postural control. 

CFMAS tension manifests as as a strong or weak phenotype. A 

strong CFMAS phenotype will be expected to develop a counter-

clockwise/forward maxillomandibular rotation, while a weak 

CFMAS phenotype will be expected to develop a clockwise/ 
backward maxillomandibular rotation pattern.  

Brain Growth and Craniofacial Adaptation up to the Age 
of 20 

  Lateral cranial expansion is limited after approximately 1 
year of age [10,14] and ACB anteroposterior growth is lim-
ited by 8 years of age with the fusion of sphenoethmoid, 
frontoethmoid and intersphenoid synchondroses [11]. The 
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brain temporal lobe continues growing for several more 
years after brain anterior lobe growth has ceased [13]. How-
ever, elongation of the middle cranial fossa (MCB) nearly 
ceases by 10 years of age [11]. Therefore, it is proposed that 
most brain growth must be in a cephalad direction [12]. 

 The concept of a cephalad growth component is derived 
from the works of Bergersen [42], Bjork [21, 32, 41], Broad-
bent [43], Coben [44], Kanomi (K point), Melsen [45] and 
current observations superimposing overlay tracings of  
sequential cephalometric radiographs referenced on the  
occipital condyles [46, 47]. All of these data demonstrate  
cephalad movement of sella turcica relative to the PCB of  

the skull [46, 47]. Microscopic evidence of cephalad brain 
movement is evident as bone apposition along the surfaces 
of sella turcica, including the anterior curvature of sella 
turcica, which is traditionally considered stable yet displays 
pubertal apposition [10, 13, 45, 48, 49]. Late brain growth 
beyond what is traditionally accepted is consistent with more 
recent observations. For example, brain allometry has been 
observed with peak development of gray matter at approxi-
mately the age of 12 for the frontal and parietal lobes, age 16 
for the temporal lobes, and through 20 for the occipital lobe 
[33]. Moreover, gender related pubertal spurts in brain 
growth suggest gonadal hormone influence, [33] and coin-
cide with the somatic growth spurt.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). (A) The “facial block” showing the effects of angular invariance between the back of the face (summarized by the PM plane) and 

the top of the face, which is also the bottom of the anterior cranial base (S-FC). Changes in cranial base angle (NHA-BaS or alternatively  

S-FC-BaS) cause the top and back of the face to rotate together around an imaginary axis through the PM point [12]. Illustration from [12]. 

(B) Osteocutaneous ligaments that originate from periosteum and insert directly into dermis (zygomatic and mandibular ligaments are 

shown; zygomaticus minor and major muscles, masseteric cutaneous ligaments and risorius are also shown). Note the modiolus as a conflu-

ence of muscles located at the angle of the mouth. Illustration from [54]. (C) Skull in norma lateralis shows the asymmetric growth of the 

spheno-occipital synchondrosis. Tension on the aponeurosis (arrows at glabella and occipital nuchal line) are expressed as an inverted V with 

the net force at the center of the skull, superior to the occipital condyle (large arrow). This is expected to create a lever system (dark lines) 

pivoting at the large arrow and extending to the smaller arrows. These are the effective forces of the muscles on the dorsal and ventral skull 

surface. (D) The divergence of the facial planes (sella-nasion at the top and then descending; orbitale-porion or the Frankfort horizontal; 
palatal plane; occlusal plane; mandibular plane). 
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 This late brain growth may not have been previously  
apparent as traditional methods of intercranial volume meas-
urement could be misleading. Radiographic midline struc-
tures may not be an adequate reference, [50] anthropometric 
measurements may not be reliable, [51] and the stability of 
the ACB structural midline at age 10 is only valid for the 
ethmoid region [41]. 

 Traditionally, weight of the growing brain is expected to 
cause surface resorption on the endocranial aspect of the 
human cranial base, [13, 48] but this has not been experimen-
tally tested [12]. Intravital staining and an accurate specimen 
age are still needed to establish the quantity and temporal 
nature of deposition or resorption for the endocranial com-
partments with growth and development [30] as assessment 
of these is impossible with microscopic histology. 

 Cranial base flexion during growth is unique to humans 
and complements inferior drift in the PCB by moving the 
floor of the PCB caudad relative to the middle cranial fossa 
[12]. The surface resorption of the cranial fossa seems negli-
gible when comparing the growth of the PCB relative to the 
position of the occipital condyles, MCB and ACB [46, 47, 
52]. The occipital condyles are a stable structure to reference 
due to the lack of an epiphyseal growth plate in the presence 
of a large pressure gradient [2, 46, 47]. The observed move-
ment with the occipital condyle reference seems to correlate 
with the observation that PCB displays relative inferior drift 
which positions the PCB below the middle cranial fossa [12]. 
Growth of the basilar region of the skull must be limited to 
avoid impinging on critical neural structures [12] and there-
fore dural “slings” cradle the brain and restrict growth that 
might compromise neurologic function (Fig. 4). The des-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Cranial resorption (dark stipple) and deposition patterns (light stipple) are illustrated on sectioned skulls. Areas of bone deposition 

are along the petrous portion of the temporal bone, crista galli/foramen cecum, between the occipital lobes, and sella turcica. The anterior 

(ACB), middle (MCB) and posterior (PCB) cranial fossa are shown (bottom left). The proposed normal distribution of facial bone resorption 

and deposition is shown (top). Bottom right displays the desmocranial lining of the cranial base; the lining is continuous with the falx cerebri 

but shown are the tentorium cerebelli (TC) and its attachment to the anterior clinoid process (ACP). This connection spans the SOS creating 

tension on the endocranial aspect of the SOS and contributing to differential growth of the SOS. Illustration from [48].  
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mocranial capsule (dura) is anisotropic, being thicker at its 
base which grows slowly and resists the enlargement of the 
brain in the developing cranial base. Over the calvarial re-
gion it is thinner and less resistant, allowing the cerebral 
hemispheres, and to a lesser extent, the cerebellar hemi-
spheres to expand more rapidly [10, 53]. Also, cephalad 
brain growth better explains why the entire cranial base sur-
face is not resorptive, but displays areas of bone deposition: 
the petrous portion of the temporal bone, crista galli/foramen 
cecum, between the occipital lobes, and sella turcica [13, 48]

 

(Fig. 4). Continued relative growth of the PCB into the ado-
lescent years is an important factor that has not been ade-
quately appreciated. The relative effects of cephalad brain 
growth warrant further study. 

Explaining Growth Force Vectors 

  Mitz and Peyronie (Mitz and Peyronie, 1976) originally 
coined the term SMAS, yet despite numerous publications 
on this subject, there remain significant variations in the 
anatomic descriptions of facial fascial anatomy, and descrip-
tions of the relationship between the superficial and deep 
facial fascia remain imprecise [54]. The SMAS is a compos-
ite fibro-fatty layer comprising collagen and elastic fibers 
interspersed with fat cells. It microscopically displays a con-
siderable amount of elastic fibers in close relationship to the 
collagen fibers, and the collagen fibers display a convoluted 
appearance similar to that found in the dermis [55]. The 
SMAS invests the superficially lying mimetic muscles (mus-
cles of facial expression; e.g. platysma, orbicularis oculi, 
zygomaticus major, and risorius) and forms a continuous 
sheath throughout the head and neck, extending into the 
temporal region, forehead, scalp, malar areas, nose and upper 
lip. Thus the superficial facial fascia is intimately associated 
with the mimetic muscles [54, 56]. The mimetic muscles and 
SMAS function as a single anatomic unit in producing 
movement of facial skin [54] and the low viscoelastic prop-
erties of the SMAS are the reason for incorporation of the 
SMAS as a standard part of the rhytidectomy (facial lift) 
procedure [55, 57]. Also deserving further investigation and 
consideration are the relatively thick osteocutaneous retain-
ing ligaments that anchor periosteum to dermis, notable  
being the zygomatic and mandibular ligaments [54] (Fig. 3). 

 The coordinated effect of facial muscle and regional 
SMAS blending develops a CFMAS. The proposed model 
provides a more biologically correct explanation for observa-
tions that earlier models have been unable to provide satis-
factorily. The tension conducted through the CFMAS ex-
plains the enlargement of airway and maxillomandibular 
rotation patterns consistent with the observations of implant 
studies [28, 58] and cephalometric superimposition refer-
enced at I-point on the occipital condyles in norma lateralis 
[46, 47]. 

  Growth associated force transmittance through mimetic 
muscles has previously been described by Delaire [59, 60]. 
CFMAS tension may also be related to resting muscle tonus, 
[61] which opposes gravity effects resulting from increase in 
tissue mass (e.g. muscle, fascia, skin, bone, connective  
tissue, associated hydration of these structures and any canti-
lever developed). During normal growth it is postulated that 
the tension through the CFMAS resists the effects of gravity 
until CFMAS attenuation with late aging [54]. Hemifacial 

paralysis, (e.g. Bell’s Palsy) conveniently displays effect of 
muscular atonicity resulting in uncompensated gravitational 
forces upon tissue mass, which is tissue sag (Fig. 5). 
CFMAS tension transmittance is amplified with muscular 
growth and development with puberty, along with densifica-
tion and increased crosslinking of connective tissue compo-
nent [62] (Fig. 5). An increase in muscle size and fat deposit 
deep to the SMAS may also have a tendency to place the 
overlying associated SMAS in tension which exhibits some 
similarity to the work of Solow [17, 54, 56, 63]. 

Defining the Role of Muscle Plasticity as a Conduit for 

Craniofacial Growth Forces 

 The CMFAS is an unstable conduit for force transmit-
tance and its development is age dependant, reactive and 
inherent (genetic).  

 The traditional view is that bone reacts to muscle forces 
but that muscle does not react to bone modeling. However, 
there is increasing evidence that the muscle response is also 
adaptive to underlying skeletal development [64]. The effect 
of gravity with increase in bone and muscle mass may stimu-
late muscle lengthening. In addition to functional muscle 
development, genetic properties may determine the number 
of muscle myofibrils, myofibers and myotubes [65, 66] and 
quality of the supporting connective tissue, thereby display-
ing individual variation. 

 During muscle growth, there is an increase in length by 
addition of sarcomeres at the muscle tendon junction for 
which the rate of sarcomeres addition may vary temporally 
depending on the individual muscle [67]. At a certain point, 
the addition of sarcomeres and associated increase in muscle 
fiber length with growth ceases. Any further increase in 
muscle belly length is presumed to be a reorganization of 
muscle fibers as insertion of myofibers into the tendon are 
not uniform but instead stagger [67]. However, the muscle 
continues to increase in girth due to myofibril splitting as a 
result of oblique forces within the sarcomeres when a critical 
diameter is reached [68]. Immobilization of limbs in both 
extended or contracted muscular positions displays a  
decrease in the number of sarcomeres relative to controls, 
presumably due to the restriction of function [67, 69]  
because the bone length in immobilized specimens is not 
significantly different than controls. This is assumed to be a 
result of increase in tendon length [67]. Immobilization is 
obviously not physiologic as it overpowers the normal func-
tion of the Golgi tendon apparatus and occult muscle tonus, 
thereby stressing ligaments and tendons beyond the normal 
viscoelastic limits [70]. Therefore, certain observations from 
immobilization experiments may not be representative of the 
normal growth process. 

 As muscle ages, there is a rapid increase in quantity and 
quality of muscle associated connective tissue and therefore 
CFMAS; [62, 71-73] this increase may be a phenomenon 
throughout the connective tissue in the body. Skeletal muscle 
growth is believed to be rate limited by connective tissue 
growth which controls myofiber diameter and length [73-75] 
increasingly as the intramuscular connective tissue arrange-
ment becomes thicker and increasingly cross-linked with age 
[62] (Fig. 5). The latter is resistant to lengthening compared 
to the rather compliant muscle fibers [71, 73] and relatively 
small increases in the muscle collagen content increases 
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muscle rigidity due to the extremely low compliance of col-
lagen [62, 73, 76, 77]. A decreased range of motion during 
distraction osteogenesis of bone (sectioning of a bone, allow-
ing callus formation/primary healing and then applying a 
force across the wound to stretch the tissues thereby stimu-
lating bone and tissue formation to elongate bones) seems a 

function of the perimysium adaptation rather than of the 
muscle fibers [75, 78].  

 As brain growth and cranial rotation decrease with early 
aging (  25-30 years of age), the influence of CFMAS  
tension is expected to increase through decreased connective 
tissue compliance relative to gravity affects on tissue mass 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). (Top) Hemifacial paralysis is shown. Notice the tissue sag (left), and the resulting alar contour and relative vertical position between 

the paralyzed and normal sides (middle). There is arguably a more inferior position of the patient’s left orbit and eye. Photograph from [116] 

(Bottom left) There is a progressive age-related fiber thickening, densification and cross-linking of the connective tissue component of mus-

cles (endomysium, perimysium, and epimysium) (bottom right) [62]. Age dependant directional restriction caused by the process requires 

further study. Photograph from [62]). (Bottom right) The original pterygomasseteric attachment may be preserved as the ramus grows poste-

riorly and new muscle attachment heads are developed; numbered from [1] initial/oldest attachment to [7] more recent attachment. Photo-
graph from [103]. 



The Aponeurotic Tension Model of Craniofacial Growth in Man The Open Dentistry Journal, 2009, Volume 3    107 

[71, 73] until the age at which brain growth and cranial rota-
tion cease and CFMAS attenuation [54] becomes an issue. 

Tension is Transmitted from the Galea Aponeurotica/ 
Occipitofrontalis to the Cranial Base 

 It is postulated that the anteroposterior tension within the 
occipitofrontalis muscles is the cause of the asymmetric 
separation of the SOS. The weight of the brain on the des-
mocranial capsule (dural slings traverse the SOS; Fig. 3) and 
cranial base, and anteroposterior tension muscle tension 
within the CFMAS, cause a pivot point at the superior aspect 
of the SOS creating a greater relative separation of the pha-
ryngeal side of the SOS relative to the endocranial aspect 
[45, 79]. A biomechanical lever system would allow smaller 
increments of brain growth a greater significance in directing 
facial tension, (Fig. 3) however, a finite element analysis is 
needed to adequately describe the stresses and distinguish 
effects.  

 Asymmetric growth at the SOS has been demonstrated 
with and without implants as radiologic markers [12, 41, 45, 
79-81]. Hyaline cartilage becomes anabolic when induced by 
tensile stress, which also accelerates endochondral ossifica-
tion at the pharyngeal surface of the SOS [80, 82-86]. There-
fore, it is difficult to demonstrate the asymmetric growth of 
the SOS radiographically because of concomitant bone mod-
eling. Consideration must be given to the SOS as a reactive 
site of growth rather than a primary growth center during the 
adolescent and early adult years [87]. Premature fusion of a 
cranial suture, craniosynostosis, causes flattening of the  
basicranium, [88] while inhibition of SOS growth creates a 
more flexed cranial base [12].  

 Implants demonstrate that growth of the face does not 
follow straight lines, but rather curves in association with 
sutural plane rotation [58]. Rotation of the cranium [12] 
seems related to allometric brain development [12, 33, 89] 
and possibly the progression of brain myelination patterns 
(the water content of fat being less than grey matter), brain 
capillary blood volume, [90] and progressive pneumatization 
of the facial bones [46] which collectively allow the head to 
remain balanced as facial tissues enlarge with growth. The 
physiologic result is a circular growth pattern around the 
basioccipital portion of the occipital condyles. The occipital 
condyles in norma lateralis have been observed slightly dor-
sal to the calculated center of mass for preserved head 
specimens, [91] however this is due to artifacts [90, 92]. 
MRI displays a 4% greater brain volume and weight result-
ing from the volume of blood in gray matter capillaries in the 
living brain, [90] which may cause the center of mass to be 
located directly over the occipital condyles. Maintenance of 
head balance is important as it seems that CFG emanates 
from the occipital condyles [93] which are along the central 
growth axis of the body and proximate the brainstem, around 
which the brain grows centripetally. Balance of the head 
would reduce any unnecessary metabolic demand required of 
the musculature for an upright posture; conservation of  
energy from an evolutionary standpoint. 

 The proposed CFG model is able to explain the develop-
mental and functional observations of airorhynchy and the 
facial block hypothesis [12, 31]. The concept of brain tempo-
ral lobe growth displacing the ACB forward must deal with 
the asymmetric growth of the SOS, lack of brain temporal 

lobe/middle cranial fossa elongation, [11] and lack of a  
direct articulation between the MCB and maxilla due to 
separation by the infraorbital fissure. Additionally, current 
consensus seems to be that the nasal septum functions to 
support the roof of the nasal chamber rather than actively 
participate in the displacement of the palate itself by  
approximately 4 years of age [4, 13, 14, 94]. On the whole, 
the tissue(s) that displaces the maxilla downward with  
craniofacial growth postnatally have not yet been satisfacto-
rily defined relative to the competing nasal septum theory 
and functional matrix theory [26].  

Airway and Speech Development Through CFMAS  

Tension 

 Sagittal rotation of the cranium at the occipital condyles 
and asymmetric growth at the SOS are proposed to cause the 
face to rotate cephalad and ventral, opening the airway with 
normal jaw rotation and extension of tissues (lingual tonsil, 
velum) [95, 96] (Fig. 6). The resultant relative descent of the 
larynx develops the hyolaryngeal complex, [12] creating a 
resonance chamber to allow voice production for speech.  

 Transverse development of the maxilla and nasal airway 
is believed to be a result of muscle mass increases resulting 
in greater CFMAS tension which causes the teeth to be com-
pressed (keeping in mind the relative separation of the jaws 
with growth). Developed is a greater posterior relative to 
anterior transverse increase of the maxilla and nasal airway 
with growth (molar force is greater due to the Class 3 lever 
system of the jaws) [27]. The functional occlusion of the 
teeth displaces the maxillary halves, thereby increasing the 
transverse airway and providing room for the tongue. The 
tongue has been believed to play a major role in transverse 
airway enlargement, however the apposition observed on the 
bony palate during growth [13, 97] seems dismissive of a 
pressure large enough to displace the maxillary shelves. 
Also, the comparable posterior face height of individuals 
with hyperdivergent/leptoprosopic (simply, long faced) pro-
files to those with the hypodivergent/europrosopic (simply, 
short faced) profiles also raises questions of relative poste-
rior tongue posture [98]. 

 Lateral midfacial muscle attachments may also play a 
minor role in developing transverse nasal dimension. Cranio-
facial muscles are bilateral and, through lateral attachment 
relative to the midfacial bone centroids (center rotation), may 
cause lateral rotation below the centroid and medial rotation 
above the centroids. This may contribute to the inverted “V” 
shape [13] of the nasal aperture, in conjunction with occlusal 
forces transmitted across the palate and mid-palatal suture. 
This must be weighed against the reciprocal forces from the 
muscles of mastication. 

SUPPORT FOR THE PROPOSED MODEL 

The Effect of Cranial Rotation in the Expression of  

Facial form  

 Maxillomandibular rotation with craniofacial growth 
(CFG) had not been apparent until the Bjork implant studies 
of the mid-fifties [20]. Yet, as a whole, the interrelationship 
between the growth of the maxilla and mandible is still not 
fully understood, and remains one of the great challenges of 
craniofacial biologists [14]. 
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 The CFMAS tension is not only a dorsal restrictive pres-
sure as with the soft tissue stretching CFG model proposed 
by Solow, [17] but displays a relative cephalad tension capa-
ble of directing anabolic growth. The CFMAS tension is also 
opposite to the dorsal/caudad force expected from supra-
hyoid muscle attachment relative to cervical vertebrae 
growth of the Houston CFG model [16] (Fig. 1). 

Maxillomandibular Rotation and TMJ Modeling Result-

ing from Differences in CFMAS Somatotype 

 The inherent (genetic) contribution of the CFMAS in the 
brachycephalic and dolichocephalic individual is believed to 
influence maxillomandibular rotation [75, 99]. Brachy-
cephalic individuals tend to be europrosopic, strong muscled 
[100] and display a hypodivergent radiographic profile, 
while dolichocephalic individuals tend to be leptoprosopic, 
weak muscled [100] and display a hyperdivergent radio-
graphic profile (see Dale [101] for a detailed comparison).  

 In general, CFMAS tension is believed to be related to 
resting muscle tonus [61] and the connective tissue compli-
ance, and is greater in the europrosopic versus leptoprosopic 
individual resulting from muscle morphology [100].  

 During normal CFG rotation, the tension through the 
CFMAS is expected to modify the effects of gravity on the 

viscerocranium as muscle growth increases with puberty, 
along with progressive densification and crosslinking of the 
associated connective tissue component (Fig. 5) until age 
related CFMAS tension attenuation occurs [54]. The effect 
of the CFMAS resisting gravity may result in the anterior 
displacement of the midface by maxillary contact with the 
mandible through a functional occlusion of the teeth. The 
divergence of the facial planes in combination with the op-
posing gravity and CFMAS forces seem to create a wedge 
effect (Fig. 3). Hence, leptoprosopic facial types which dis-
play a hyperdivergent mandibular plane angle usually dis-
play a sagittally retruded maxilla, as will be further explored. 

The Anatomic Perspective of the Proposed Mandibular 
Rotation Around the Pterygomasseteric Sling 

 The rotation axis of the mandible has been postulated but 
not definitively ascertained. Therefore, based on current ana-
tomical understanding, the pivot point for mandibular rota-
tion is proposed at the pterygomasseteric sling (PtmS) which 
is formed by the blended aponeuroses of the masseter and 
medial pterygoid muscles at the angle of the mandible [102, 
103]. Horizontal motion of the mandible is allowed as the 
sling cradles the mandible, in addition to mandibular rotation 
around the “true” pterygomasseteric sling (PtmS). The PtmS 
is proposed as original neonatal muscle attachment site that 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Illustrated are the components of Waldeyer’s ring of lymphoid tissue: the palatine tonsils, adenoid tissue mass and lingual tonsil. 

Enlargement of the nasal lining with rhinitis can alter laminar airflow. Normal mandibular rotation is expected to direct the tongue forward 

through muscle attachment at the genial tubercles (internal surface of the mandibular symphysis). Cranial rotation serves to direct the velum 

forward in coordination with differential SOS growth. 
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approximates the neutral zone of the mandibular periosteal 
sleeve where little periosteal migration occurs [104] (Fig. 7). 
As children grow, there is a migration of the periosteum and 
associated muscle attachments; [105-107] muscle portions 
nearer this neutral zone would be expected to remain posi-
tionally stable and/or new muscle attachment/heads devel-
oped [103, 108] (Fig. 5). 

The Normal to Brachycephalic Individual (Forward/ 

Counter-Clockwise Rotation) 

 In the mesocephalic to brachycephalic individual, tension 
in the CFMAS passes through the anterior of the mandible 
via the modiolus and osteocutaneous ligaments, (Figs. 1 and 
3) and is believed to cause a forward/counter-clockwise 
(CCW) maxillomandibular rotation described by Bjork [20, 
109]. 

 The effect of gravity on the CFMAS suspended viscero-
cranial elements includes other elements resting on the skele-
tal units; for example, the eyeballs. The reason that the vis-
cerocranial elements can be suspended relative to the cepha-
lad force of the functional occlusion and not provide com-
pression to the circumaxillary sutures may be in part that, 
unlike the rather direct distraction of the sutures resulting 
from the force of gravity, the force of the functional occlu-
sion is redistributed throughout the skull due to buttressing 
[110] (Fig. 8) and compression of the bone. Due to proxim-
ity, orientation and the initial buttressing, the direct affect of 
functional occlusion on the palatal suture is not common to 
all the circumaxillary sutures. 

 CCW mandibular rotation causes distraction (separation) 
of the articular surfaces of the temporomandibular joint, re-
sulting in bone apposition on the anterior surface of the con-

dylar head (Fig. 7) and the articular eminence of the tempo-
ral bone [102]. This results in caudad movement of the go-
nial angle leading to increased ramal height relative to ante-
rior face height, [102] a more caudally positioned glenoid 
fossa and steeper articular eminence [111]. CCW rotation of 
the mandible also results in increased overbite and progres-
sive restriction of the mandibular dentoalveolar complex on 
the basal bone

36
 and causes overjet to open and the incisors 

impinge on the tongue. The wedge cross-section shape of the 
teeth results in an increased overjet as the overbite increases, 
and the mandibular incisors tend to drift labially relative to 
implants due to the tongue impingement, as demonstrated by 
Bjork [21]. CCW rotation increases the space anterior to the 
ramus for tooth eruption relative to the position of the PtmS; 
therefore tooth crowding is less probable in these individu-
als.  

Dolichocephalic Individuals (Backward/Clockwise Man-

dibular Rotation) 

 Dolichocephalic individuals often display a decreased 
biting strength and backward/clockwise (CW) maxilloman-
dibular rotation compared to mesocephalic individuals, 
which is believed to be a result of decreased CFMAS ten-
sion. Airway obstruction is often a concern with these indi-
viduals resulting in a neuromuscular response that positions 
the tongue relatively forward [101] of the PtmS causing the 
gravitational effects to overly dominate CFMAS effects. 
This results in a more pronounced CW rotation of the man-
dible, a narrow and longer face, and posterior rotation in 
nose shape (dorsal hump). Condylar growth is restricted by 
compression at the articular surfaces of the mandibular con-
dyle and articular eminence resulting in a glenoid fossa that 
is relatively more cephalad and shallow [111, 112]. The 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). (A) The site of the PtmS is shown with arrows, which corresponds to the original/neonate location of the pterygomasseteric sling. 

Illustration from [117] (B) Shown is the neutral zone observed in the periosteum of the rabbit mandible, which is an area of little expected 

muscle attachment migration. Illustration from [104] (C) CW and CCW rotation is illustrated; with backward (CW) rotation there is inhibi-

tion/resorption at the condyle and with forward (CCW) rotation there is distraction of the condyle articular surface and associated anabolic 

modeling; compensatory modeling at menton and gonion, and tooth eruption are not shown.  
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CFMAS causes superficial pressure induced resorption of 
the anterior maxilla, [27] maxillary retrusion, resorption at 
menton and the mandibular teeth are posteriorly inclined, as 
gravity’s effect on the mandible is resisted by the CFMAS. 
This reduces the relative depth of B-point and anterior orien-
tation of the symphysis. The mandible tends to grow ventral 
less than in the europrosopic individual and the caudad 
force on the anterior mandible predominates. The anterior 
mandible bends over the PtmS as a result of the forward 
tongue posture and restriction of the PtmS which accentuates 
the antegonial notch in combination with matrix apposition 
at gonion as a result of tissue stretch to the periosteum. The 
issue of Wolff’s law must be analyzed in light of non-
traditional microscopy patterns on the bony surfaces of ne-
cropsy specimens [113]. Since there is a CW rotation around 
the PtmS, (Fig. 7) the ramus does not move dorsal relative to 
the PtmS, resulting in an increase probability of tooth crowd-
ing.  

Experimental Observations in the Rat 

 In rats, this muscle dependant mandibular rotation and 
associated articular cartilage change overlying the head of 
the mandibular condyle has been demonstrated by Navarro 
[102]. Increased thickness of the condylar cartilage, length of 
the ramus after temporalis muscle resection (TR) and open-
ing of the Stutzmann’s angle (estimates the direction of con-
dylar growth) were described as unexpected; however, the 

observations fit well with the proposed model of rotation 
around the PtmS. With masseter muscle resection (MR), 
there was a backward rotation of the mandible and with TR, 
there was a forward rotation. Considering rotation of the 
mandible around the PtmS, MR releases the restrictive ele-
ment of the PtmS, while TR releases tension posterior to the 
PtmS allowing forward rotation of the mandible. The authors 
[102] concluded that alterations in masticatory musculature 
can modify “articular growth”. Observation of the mandibu-
lar condyle articular cartilage displayed an increase in thick-
ness with TR and a decrease in thickness with MR. A thinner 
ramus was observed with MR and an increased ramus was 
noted with TR. These are expected with the proposed mecha-
nism of craniofacial growth.  

CONCLUSIONS 

 The ability to model growth patterns will lead to further 
understanding and insights. Cephalometric study based on 
the occipital condyles as the craniofacial growth axis leads to 
a more biologically correct craniofacial growth model. This 
aponeurotic tension model of craniofacial growth, in which 
brain growth and cranial rotation create cephalad tension 
within the inter-related superficial musculoaponeurotic sys-
tems of the head and face, adds clarity to the mechanism of 
maxillomandibular rotation and TMJ development. The 
modeling of craniofacial growth is important when consider-
ing surgical intervention during growth, prediction of condy-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). The force vector resulting from the functional occlusion of teeth is not equal and opposite to the force vector of gravity; therefore, 
functional occlusion would not be expected to place circumaxillary sutures in compression. Figure from [110]. 
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lar resorption, post-surgical relapse, temporomandibular 
joint dynamics/growth, understanding of airway, future 
beneficial surgical procedures and age specific plasticity of 
tissues. 
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