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Abstract:
Objective: To assess the effect of 10% doxycycline (DOX) compared to 2% chlorhexidine (CHX) on the longevity of
dentin-bond strength.

Methods: Sixty-six extracted molars were collected and prepared and divided into two groups based on the test to be
performed. Group I (n=48) for the micro-tensile bond strength (µTBS) test and Group II (n=18) for the confocal laser
scanning microscopy (CLSM) test. Group I was divided into 3 subgroups (n=16) according to pretreatment agent
following acid etching. Group A (control): without pretreatment, group B: 10% Doxycycline pretreatment, Group C:
2% Chlorhexidine pretreatment. Palfique universal bond (PU) and Composite resin were applied according to the
manufacturer's instructions. Group II was divided into 3 subgroups (n=6) based on the same pretreatment protocols
used in Group I. However, for resin-dentin bond evaluation using CLSM, 0.1 mg/mL Rhodamine B fluorescent dye was
mixed with the adhesive. After that, all subgroups of group I and group II were subdivided into 2 subdivisions:(T1)
without thermocycling and (T2) thermocycling for 10000 cycles. µTBS testing was achieved via a digital universal
testing machine. The failure mode was tested by a stereomicroscope (30x magnification).

Results: Intergroup comparison of mean µTBS values (MPa) was performed using one-way ANOVA, then by Tukey
post-hoc test  with statistical  significance at  p  ≤ 0.016.  In contrast,  intragroup comparison was achieved using a
paired t-test with a statistical significance of p ≤ 0.05. Comparison between categorical data was made using a chi-
square test. The 10% DOX pretreatment group showed significantly higher µTBS values than CHX and the control
group  with  and  without  thermocycling  (p  <  0.001).  No  statistically  significant  difference  in  failure  modes  was
recorded among groups without and with thermocycling. There was no correlation between µTBS and failure mode
performed  using  Spearman’s  rank  correlation.  CLSM  revealed  that  the  10%  DOX  group  exhibited  greater  resin
infiltration with a thicker hybrid layer. Both matrix metalloproteinase (MMP) inhibitors created a uniform hybrid
layer.

Conclusions: Pre-treatment with MMP inhibitors might have inhibited the degradation of resin-dentin interfaces. In
addition, 10% DOX pretreatment for 60 seconds after etching appears to be more efficient in enhancing the durability
of  the  bond.  Additionally,  the  composition  of  PU  may  influence  bond  strength,  warranting  further  investigation.
Moreover, thermocycling may adversely impact the micro-tensile bond strength.

Keywords: Confocal  microscopy,  Micro-tensile bond strength,  Bond durability,  Doxycycline dentin pretreatment,
Chlorhexidine dentin pretreatment.
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1. INTRODUCTION
The advent of adhesive systems has ushered a paradigm

shift  in conservative dentistry,  offering an array of  revolu-
tionary  capabilities  that  were  previously  beyond  imagina-
tion. These cutting-edge solutions permit clinicians to bond
with  tooth  structure  without  relying  on  retentive  cavities,
bringing in an era of minimally invasive dental procedures
[1].  Hence, the retention of adhesive restorations is deter-
mined by the bond strength between the tooth structure and
the restorative material.  In most clinical procedures of ca-
vity preparation, dentin is the principal substrate. Therefore,
ensuring the strength and stability of both the hybrid layer's
dentin and adhesive components will forever be crucial for
obtaining the bond’s long-term perseverance [2]. The dentin-
resin  bond  is  considered  a  tissue  remodeling  method
wherein demineralized dentin is used as a scaffold to allow
resin  infiltration.  The  idea  is  to  create  a  hybrid  layer  that
will hold resin composites or adhesives firmly to the deeply
mineralized dentin [3].

A combination of mechanical and chemical forces causes
the hybrid  layer  to  degrade,  including procedures  like  the
enzymatic  and  hydrolytic  disintegration  of  the  uncovered
dentin collagen fibrils [4].  This degradation may begin im-
mediately  after  bonding  or  even  following  adhesive  poly-
merization [5]. In the first method, acid etching leads to the
gradual  breakage  of  collagen  fibrils  by  MMPs,  which  are
activated by this process [6]. Conversely, the later stages of
degradation  are  initiated  by  the  hydrolysis  of  vulnerable
groups  such  as  carboxyl,  hydroxyl,  and  phosphate  functi-
onalities  within  the  molecular  structure  of  methacrylate-
based  resin  monomers  [7].

Enzymes are essential for the hybrid layer's dissolution,
particularly MMPs, which are metal-dependent proteolytic
enzymes that can break down collagen. They can be divided
into six subgroups according to their substrate specificity.
Within  these  categories  are  collagenases  (MMP-1  and
MMP-8)  and gelatinases  (MMP-2  and MMP-9)  [8].  Among
these, MMP-2 is extremely prevalent, and MMP-9 [9]. Con-
sequently, many studies imply that suppressing MMP acti-
vity may improve the hybrid layer's stability.

Many proposals aim to improve bond stability, leading
to  the  clinical  success  of  resin  restorations  [10].  Accor-
dingly, the CHX mode of action entails inhibition of enzyme
activity  on  dentin  matrices,  thus  improving  the  hybrid
layer's  longevity  and  bond  stability  [11]

DOX is classified as an antibiotic within the tetracycline
family and is recognized for its antimicrobial potency and
broad-spectrum inhibition of MMPs. The strategy involving
dentin  pretreatment  with  DOX  characterized  by  the
pathological  involvement  of  MMPs  was  proven  [12]  [13].
Furthermore, several studies have employed doxycycline as
both  an  MMP  inhibitor  and  to  retard  the  degradation
process at restoration interfaces (2). Based on research, it
appears that DOX wouldn't weaken dentin's original bond
[14]. Yet, the influence of the DOX effect on the stability of
hybrid layer longevity has not been fully explored.

Therefore, this research goals were to assess the MMPs
inhibition ability of two different dentin pre-treatments and
to gain insight into the μTBS after thermocycling. So, the
study objectives were to test the effect of a high percentage

(10%)  DOX  solution  compared  to  2%  CHX  on  the  dentin
μTBS  before  and  after  thermocycling.  The  examined  first
null  hypothesis  would  be  that  DOX  pretreatment  poses  a
similar effect on dentin bond strength as CHX. The second
null hypothesis would be that thermocycling does not affect
dentin bond strength.

2. MATERIALS AND METHODS
The research ethics board of King Abdulaziz University's

College of Dentistry in Jeddah, Saudi Arabia, approved this
study under ethical number 45-98946.

2.1. Tested Chemicals
10%  DOX  solution  preparation:  10%  (w/v)  of  DOX

(Sigma, St. Louis, MO, USA), approved by the FDA [15]. It
was allowed to dissolve for two hours at 50°C while stirring
in phosphate-buffered saline (PUS; pH 7.2, Pittsburgh, PA,
USA) solution [16].

Consepsis:  2%  CHX  gluconate  antibacterial  solution
(Ultradent  Products,  USA).

2.2. Sample Size
In a previous study by Sharifian et al. (2023), the micro-

tensile  bond  strength  (µTBS)  in  the  etch-and-rinse  group
showed a normal distribution, with a standard deviation of
1.83  [17].  Assuming  a  mean  difference  of  3  between  the
experimental and control groups, and setting the statistical
power at 0.80 to detect this difference, a minimum of seven
samples  per  subgroup  was  calculated.  To  account  for  the
possibility of a non-parametric distribution, the sample size
was raised by 15%, reaching 8 samples per subgroup. Type
I error probability would be 0.05 to test the null hypothesis.
Independent  t-test,  PS  Power,  and  Sample  for  Windows
version  3.1.6  were  used  to  determine  the  sample  size.

2.3. Specimens’ Preparation
Sixty-six recently extracted, human molars free of caries

were  stored  in  a  0.1%  thymol  solution.  A  model  trimmer
(Model  Trimmer,  Sejong,  Korea)  was  used  to  flatten  the
occlusal enamel and remove the occlusal third underwater
flow to obtain a flat exposed dentin surface. For smear layer
standardization,  600-grit  silicon  carbide  abrasives  were
used [18]. After that, teeth were placed into a mold made of
self-curing  acrylic  resin.  As  for  μTBS  testing,  forty-eight
teeth  were  used  and  randomly  distributed  based  on  the
dentin pretreatment into 3 groups n=16. Group A: no pre-
treatment (control), Group B: 10% DOX pretreatment, and
Group  C:  2%  CHX  pretreatment.  In  compliance  with  the
manufacturer's  recommendations,  dentin  surfaces  were
etched using 37% phosphoric acid before bonding (Table 1).
Control group A (n = 16) received no pretreatment. Group
B: DOX (n = 16): 10% DOX solution was brushed onto the
dentin  surface  by  a  micro-brush  for  60  seconds.  A  con-
tinuous,  2-second  moderate  airflow  was  used  to  dry  the
dentin surface. Group C: CHX (n = 16), by micro brush, 2%
CHX was added to the exposed dentin for 60 seconds, then
left  to  air  dry  for  2  seconds [20].  PU was applied per  the
manufacturer's standards (Table 1).

Dental composite Palfique LX5, Supra-nano composite
(Tokuyama  Dental  Corporation,  Taitō-Ku,  Tokyo,  Japan)
was used to build composite blocks above the dentin in 2
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mm for 2 increments. Light curing for 20 seconds to each
increment using light intensity of  1,000 mW/cm2  using a
light-emitting diode (LED) curing device (Mini LED, Sate-
lec, Acteon, France) was done. A radiometer X (SDI Limi-
ted,  Australia)  was  used  to  caliper  the  light  curing  unit
after every five specimens. Then, each group was divided
into 2 subgroups, where a group of specimens (n=8) was
immersed at 37°C for 24 hours in distilled water, while the
other  group  underwent  10,000  cycles  of  thermocycling
(19). The temperature varied with dwell periods of 15 sec-
onds  and  intervals  of  10  seconds,  ranging  from  5  to  55
degrees Celsius (Fig. 1).

2.4. Micro-tensile Testing
Restored teeth were secured with a specially construc-

ted grasping attachment parallel to the sectioning direction,
preserving the perpendicular relationship between the cut-

ting  disc  and  the  occlusal  surface.  Metal  house  with  two
screws for secure attachment of acrylic blocks soldered at a
square base to ensure standard cutting in bucco-lingual and
mesio-distal  directions  at  90  degrees  to  each  other.  A
diamond-coated disc (Isomet 4000, Buehler, Germany) of 0.3
mm was  utilized,  serially  sectioning  the  beams  to  0.8  mm
thickness. A digital caliper (Total Tools, Malaysia) was used
to ensure all beam dimensions. Each beam was preserved in
distilled water inside a tightly sealed labeled tube. Then, a
jig  was  used  to  bond  each  beam  from  the  ends  with
cyanoacrylate-based glue (Akfix 705 quick adhesive, Turkey)
at  least  1  mm  from  the  adhesive  interface.  The  glue  was
allowed to dry more quickly by using a glue accelerator. The
jig  was  placed  in  the  universal  testing  machine  (Instron,
model  3345,  MA,  USA),  which  had a  500 N load  cell  until
failure. A tensile load was applied at a cross-head speed of
0.5  mm/min.  Bond  strength  results  were  recorded  using
MegaPascal  (Bluehill  Lite  program,  Instron,  MA,  USA).

Table 1. lists of the study's materials.

Material Composition Manufacturer Application Strategy

Palfique LX5
82% by weight Supra-nano spherical
filler, monmer: Bis-GMA, Triethylene
glycol dimethacrylate

Tokuyama Dental, Tokyo,
Japan
(Lot n
o. 022E61)

1. Placed in increments of 1mm
2. Each increment cured for 20 s.

Palfique Bond
(PB)

Bottle 1 (Bond):3D-SR, MTU-6, HEMA,
BIS-GMA, TEGDMA, Water.
Bottle 2: Y-MPTES, Borate, Peroxide,
Acetone, Isopropyl alcohol added to
Water.

Tokuyama Dental, Tokyo,
Japan

1. Adhesive from two bottles (Bottles A and B). Dispense a
single drop per bottle, mix, and rub for 5 seconds.2. Dry
with air the adhesive for five seconds to let the solvent
dissipate.

Scotchbond Etchant 37% phosphoric acid 3M ESPE 1. Apply acid for 15 seconds; 2. Rinse for 10 seconds; 3. Use
an air jet to remove any remaining water for 2 seconds;

CHX (Consepsis
solution) 2% Chlorhexidine gluconate solution Ultradent Products Inc., USA

1. Use a microbrush to apply to the dentin surface for 60
seconds.
2. Give it a two-second air dry.

DOX 10% DOX solution Sigma, St. Louis, MO, USA 1. Apply to dentin surface with a micro-brush for 60s.
2.Gently air dry for 2 s.

Fig. (1). Flowchart for the μTBS test specimen preparation. (a) tooth; (b) trimming of occlusal third; (c) exposed dentin; (d) etching of
dentin; (e) dentin pretreatment application &/or bond application; (f) composite application; (g) thermocycling; (h) tooth sectioning; (i)
beams 0.8 mm thickness; (j) beam after μTBS testing (k) failure mode observation.
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2.5. Failure Mode
The fractured beams were inspected by MA 100 Nikon

stereomicroscope  under  magnification  of  30X  and  catego-
rized as either:

A)  Mixed  failure  between  adhesive  and  restorative
material

B) Dentin cohesive failure
C) Cohesive failure of restorative material
D) Adhesive failure at the restoration interface

2.6.  Confocal  Laser  Scanning  Microscopy  (CLSM)
testing

Eighteen  teeth  were  divided  at  random  into  3  groups,
n=6. Specimens were prepared the same as the previously
described method for micro-tensile specimens’ preparation,
except sectioning them in buccolingual only. Also, the adhe-
sive was mixed with approximately 0.1 mg/mL of Rhodamine
B fluorescent dye (Loba Chemie PVL. Ltd., Mumbai, India)
before application. Then, the adhesive layer was thinned for
5  seconds  with  an  air  stream,  and  composite  resin  was
applied. Half of the teeth from each group n=3 were thermo-
cycled for 10,000 cycles [20]. All specimens have been inves-
tigated using confocal microscopy (Leica Microsystems CMS
GmbH,  Mannheim,  Germany)  at  excitation  of  540  nm  and
emission of 590 nm wavelengths.

2.7. Statistical Analysis
For data analysis, version 22 for Windows Medcalc soft-

ware (MedCalc Software Ltd, Ostend, Belgium) was utilized.
For data normality,  Shapiro-Wilk and Kolmogorov-Smirnov
tests  were  done.  The  mean  and  standard  deviation  were
used  to  characterize  continuous  data  with  normal  distri-
bution. For intergroup comparison of constant data, one-way
ANOVA  was  done.  After  Bonferroni  correction,  the  Tukey
post-hoc test was completed with statistical significance set
at p ≤ 0.016 for the intragroup comparison. A paired t-test
with  statistical  significance  at  p  <  0.05  was  cast  for  the
intragroup  comparison.  Both  percentage  and  frequency
were  used  to  characterize  data.  A  chi-square  test  with
statistical significance set at p < 0.016 after Bonferroni corr-
ection was used for an intragroup comparison of categorical
data, and a chi-square test with statistical significance set at
Pat p ≤ 0.05. Using Spearman's rank correlation, the corr-
elation between bond strength values and failure mode was
examined [21].

3. RESULTS

3.1. Micro-tensile Bond Strength
Table 2 and Fig. (2) present the mean values of μTBS.

10% DOX pretreatment showed a higher statistically signi-
ficant µTBS (32.80 MPa) compared to CHX (24.70 MPa) and
control  group (20.96 MPa)  without  thermocycling  at  (p  <
0.001). While with thermocycling, 10% DOX showed higher
statistically significant µTBS (24.05MPa), compared to CHX
(15.49  MPa)  and  the  control  group  (12.67  MPa)  at  (p  <
0.001).  Intragroup  comparison  within  each  group  has
shown  a  significant  difference  statistically  between  those
without thermocycling and those with thermocycling (p  <
0.0001, p = 0.0001, and p < 0.0001) correspondingly.

3.2. Failure Mode
Failure modes analysis was done using stereomicroscope

evaluation. Table 3 and Figs. (3 & 4) show the percentage of
failure  modes  of  different  groups.  Intergroup comparisons
between the control and dentin pretreatment groups reve-
aled no statistically significant differences in failure modes
with or without thermocycling (p = 0.0907 and p = 0.2483).
Intragroup comparisons within each group have shown no
statistically significant difference between without thermo-
cycling and with thermocycling (p = 0.4707, p = 0.1026 and
p = 0.4322) correspondingly.

Finally,  for  correlation  among  μTBS  and  failure  mode
performed using Spearman’s rank correlation or Spearman’s
rho  revealed  negligible  or  no  correlation  (rho=0.166,  p=
0.3330).

3.3. Confocal Microscopy
Resin dentin interface was observed, and random speci-

mens from each group were tested (Fig. 5). Specimens with
and without thermocycling exhibited hybrid layer and resin
tag formation. DOX group showed longer and thicker resin
tags hybrid layer in  comparison with the CHX and control
group.  However,  specimens  subjected  to  thermocycling
showed fewer resin tags and weaker bonds, indicating that
thermocycling boosted the degree of enzymatic activity.

4. DISCUSSION
The hybrid layer’s biodegradation poses a challenge to

maintaining the longevity of dentin bonding. In the current
study,  the  effect  of  two  dentin  pretreatments,  known  as
MMPs  inhibitors,  on  µTBS  of  dentin-resin  was  measured
after  24  hours  and  then  after  thermocycling.  Despite  the
recent emergence of simpler adhesive solutions, total-etch
and rinse adhesives are still considered the golden standard
regarding endurance and linking strength. During bonding,
the collagen fibrils in the organic matrix are revealed by the
acidic monomers [22]. For the hybrid layer formation, the
adhesive resin monomer should infiltrate into the exposed
collagen  network.  However,  inadequate  resin  infiltration
may persist at the hybrid layer. The resulting denuded coll-
agen fibrils are susceptible to degradation by host-derived
matrix metalloproteinases (MMPs), which are activated by
phosphoric acid or acidic primers, leading to dentin demi-
neralization [23].

During  the  bonding  procedure,  phosphoric  acid/acidic
primers  demineralize  dentin  and  activate  MMPs,  which
break  down  denuded  type  I  collagen.  The  bonded  dentin
matrix in the hybrid layer is degraded by the actions of en-
dogenous collagenase and gelatinase produced from demine-
ralized  dentin  [24].  As  a  result,  the  hybrid  layer  loses  its
solidity over time, causing failure of the resin composite re-
storation.  Therefore,  the  use  of  specific  MMP inhibitors  is
recommended to prevent degradation of the hybrid layer by
suppressing  collagenolytic  and  gelatinolytic  activity  in
dentin.

In the present study, the control group had the lowest
µTBS, which could be due to the functional monomer of the
adhesive that has a direct impact on the effectiveness of the
adhesive bond. The functional monomer 3D-SR of the PU is
based on three-dimensional (3D) self-reinforcing (SR) tech-
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nology that could, in part, self-arrange within the adhesive
to  form  monomeric  structures  with  various  phosphate
groups that can interact with calcium at multiple places to
form ionic bonds. However, this result aligns with findings

by  Santander-Rengifo  et  al.  [25]  and  Campos  et  al.  [26],
who reported that adhesives containing the 10-MDP func-
tional monomer demonstrated superior bond strength com-
pared to those based on 3D-SR monomers.

Table 2. Mean and standard deviation for μTBS of resin composite preceded with different dentin pretreatment
with or without thermocycling.

ABA
Aging

Control DOX CHX p-value

Mean SD Mean SD Mean SD -

T1 20.96c 1.10 32.80a 0.93 24.70b 0.83 < 0.001*
T2 12.67c 1.51 24.05a 1.54 15.49b 0.49 < 0.001*

p-value < 0.0001* = 0.0001* < 0.0001* -
Note: T1: without thermocycling; T2: with thermocycling; Statistically significant means are those that with different small letters horizontally; the symbol *
denotes statistical significance.

Table  3.  Frequency  and  percentage  of  failure  mode  of  resin  composite  preceded  with  different  dentin
pretreatment  with  or  without  thermocycling.

ABA
Aging

Control DOX CHX p-value

AD CC CD M AD CC CD M AD CC CD M -

T1 2(12.5%) 2(25%) 4(25%) 8(50%) 0(0%) 8(50%) 3(18.8%) 5(31.2%) 4(25%) 7(43.8%) 1(6.2%) 4(25%) =0.0907
T2 4(25%) 2(12.6%) 1(6.2%) 9(56.2%) 5(31.2%) 5(31.2%) 3(18.8%) 3(18.8%) 5(31.2%) 4(25%) 0(0%) 7(43.8%) =0.2483

p-value = 0.4707 = 0.1026 = 0.4322 -
Note: T1: without thermocycling; T2: with thermocycling; Failure mode: AD: Adhesive; CC: Cohesive within composite; CD: Cohesive within dentin; M: Mixed.

Fig. (2). Bar chart showing μTBS and SD of each dentin pretreatment within each aging group.
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Fig. (3). Bar chart showing the distribution of failure mode of each dentin pretreatment within each aging group.

Fig. (4). Showing different fracture modes (Stereomicroscope images).
A: mixed fracture, B: Cohesive fracture within the composite, C: Cohesive fracture within the dentin, and D: adhesive fracture.

In addition,  the evaporation of  isopropyl  alcohol  takes
longer than that of ethanol due to its lower vapor pressure.
The  solvent  may  not  have  been  eliminated  by  the  air  jet,
which could have resulted in the formation of pores in the
polymerized  adhesive  nanolayer.  These  pores  would  have
decreased the bond strength of the adhesive layer [27, 28].

The deceased bond strength of PU, yet not fully tested,
may have been counteracted with dentin pretreatment with

DOX and CHX that showed statistically significantly higher
µTBS, respectively, than the control group.

The decreased bond strength of  PU,  although not  fully
explored, may have been compensated for by dentin pretr-
eatment  with  DOX and CHX,  both  of  which showed statis-
tically  significantly  higher  µTBS  compared  to  the  control
group.
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Fig.  (5).  Showing  resin-dentin  interfaces  before  thermocycling
(T1)  and  after  thermocycling  (T2)  (Confocal  laser  scanning
microscopy  images).
A: Control (T1), B: Control (T2), C: Dox (T1), D: Dox (T2), E: CHX
(T1) and F: CHX (T2).

DOX, a semisynthetic tetracycline approved by the FDA
for  the  treatment  of  periodontal  disease,  can  suppress
collagenase enzymes such as MMPs [29]. In this study, 10%
DOX demonstrated the highest level of MMP inhibition. The
higher concentration of DOX may have increased the inac-
tivation effect  of  DOX on MMPs [30].  Moreover,  DOX can
bind with enzyme-associated calcium and zinc and inhibit
the proteolytic action of MMPs forms [29, 30]. DOX reacting
with Ca and Zn has a potent, long-lasting inhibition effect
compared  to  CHX,  which  reacts  with  the  catalytic  Zn.
Therefore,  DOX  impedes  the  endogenous  proteases,  thus
preserving collagen from degradation and improving bond
strength [29]. The results followed Loguercio et al. and EL-
Behairy et al.  [31, 32],  who reported that using 2% mino-
cycline and 2% CHX as dentin pretreatment can slow the
resin-dentin interface degradation, contradicting some re-
search that claimed DOX negatively impaired the bonding
interface.  Stanislawczuk  et  al.  [33]  stated  that  low  bond
strength  values  resulted  after  mixing  DOX  with  bonding
agents  due  to  phase  separation.  Elkassas  and  El  Zohairy
[34] concluded that the resin monomer infiltration was not
compatible  with  the  increased  depth  of  demineralization.
Furthermore,  a  limitation  of  Dox  is  that  it  can  cause  a
noticeable brownish discoloration at the adhesive interface,
which may affect the clinical  aesthetics of  the restoration
[2].

On the other hand, the µTBS values of the CHX-treated
groups were significantly higher than those of the untreated
groups, both immediately and after thermocycling, but still

statistically  lower  than those  of  the  10% DOX group.  The
effect of CHX on bond strength aligns with the findings of
Breschi et al. and Ebrahimi et al. [35, 36]. Using CHX could
maintain  the  bond  interface,  owing  to  the  suppression  of
MMPs present in demineralized dentin [37, 38]. By binding
to the collagen matrix negative carboxyl groups and the cal-
cified dentin crystallites phosphate groups, CHX maintains
a significant affinity for dental tissue and can inhibit den-
tin's  gelatinolytic  and  collagenolytic  activities,  restricting
the  breakdown  of  hybrid  layers  [39].  Moreover,  CHX's
ability  to  saturate  protease  binding  sites  at  any  concen-
tration  and  remain  bound  to  collagen  fibrils  for  delayed
release at higher doses explains its long-term effectiveness
[40]. In addition, CHX water-based solution is considered a
rehydrating agent preserving the humidity required for the
dentin to prevent the collapse of the collagen network and
maintain it in an expanded condition [41]. This result was
opposed to  Giacomini  et  al.  [42]  and Eltawary  et  al.  [43],
who found that the application of 2% CHX had an adverse
effect  on  bond  strength.  They  found  that  the  combined
application  of  CHX  and  MDP-containing  adhesives  heig-
htened collagenolytic and gelatinolytic activities, in addition
to increasing the hydrolytic degradation of collagen fibrils.
Also, CHX may have influenced the formation of collagen-
protective  MDP–Ca  salts.  This  observation  aligns  with
previous research that examined the impact of CHX solution
on  the  bonding  strength  of  adhesive  systems  with  dentin
[44, 45, 46]. These conflicting results from previous studies
may  be  attributed  to  variations  in  CHX  concentrations,
types of bonding systems, storage media, and experimental
methods.

Beyond that, thermocycling negatively affected all tes-
ted groups, so the second null hypothesis was rejected. The
samples  were  subjected  to  a  10,000  thermocycles  aging
process  between  5  and  55°  C,  representing  acceptable
standardized  conditions  that  would  simulate  6  months  of
clinical  aging,  predicting longevity and clinical  success of
restorative materials [47]. Thermocycling could stress the
bond  between  the  resin  and  dentin,  accelerating  water
sorption and leaching of resin monomers [48], leading to a
statistically significant decrease in µTBS compared to 24 h
in all test groups. However, µTBS values of DOX and CHX
groups  with  thermocycling  were  statistically  significantly
higher  than the control  group,  which may speculate  their
ability to inhibit the activity of MMPs, preventing collagen
degradation over time. Moreover,  HEMA presents the ad-
hesive as hydrophilic and more liable for water degradation
during water storage and thermocycling [49].

Regarding  the  resin  dentin  interface  analysis  with
CLSM, the hybrid layer and adhesive resin penetration into
dentin tubules were observed for all groups. The Dox group
showed a  continuous hybrid  layer  and greater  diffusion of
adhesive resins into dentinal tubules. However, pores were
observed along the hybrid layer in nearly all groups, which
may  be  attributed  to  the  low  vapor  pressure  of  isopropyl
alcohol in the PU adhesive, as previously mentioned [27, 28].

Observing the failure  mode percentages  revealed that
all the test groups displayed almost identical failure values
for all modes with intergroup and intra-group comparisons.
This  may  verify  that  even  when  the  cohesive  force  of  the
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substrate material  contributes to failure resistance,  adhe-
sive,  cohesive,  and  mixed  failures  under  load  application
are primarily caused by the separation of the resin-dentin
beam at lower stress levels than those required to separate
the substrate specimen [50]. This could be attributed to the
low performance of PU, stated by many authors due to its
chemical composition [25]

It was found that there was no correlation between µTBS
values and failure modes.  The various failure modes could
be  explained  by  the  test  mechanics  and  the  material’s
tendency  to  fracture  rather  than  a  sign  of  bond  strength
[51].  As  for  this  study's  limitatuins,  for  future  studies,  a
larger sample size should be considered. It is recommended
to compare self-etch with total-etch bonding and to employ
extended aging with increased thermal cycles to validate the
benefits of MMP inhibitors.

CONCLUSIONS
Under the limitations of this study, several conclusions

can be drawn.  Pre-treatment with MMP inhibitors  such as
DOX  and  CHX  resulted  in  higher  bond  strength  values  in
both 24-hour and aged specimens. Among them, a 10% con-
centration of DOX appeared to be more effective in enhan-
cing the longevity of the dentin–resin bond. Additionally, the
composition of PU may negatively influence bond strength,
indicating the need for further investigation. Thermocycling
was  also  found  to  have  a  significant  detrimental  effect  on
micro-tensile bond strength, highlighting the importance of
considering  aging  protocols  in  evaluating  adhesive  per-
formance.

CLINICAL IMPLICATIONS
While  CHX  improves  dentin  bond  strength,  10%  DOX

may further enhance bond strength and durability. The de-
gradation  of  the  bonding  interface  is  a  significant  clinical
issue. Therefore, the promising results from MMP inhibitors
should  be  clinically  evaluated  further.  Extended  follow-up
periods are necessary to determine whether these products
can be effectively integrated into restorative protocols.
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