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Abstract:
Introduction: Streptococcus mutans  is an important contributor to tooth decay. Curcumin exhibits minimal side
effects and has broad applications in various antimicrobial  research.  Although curcumin derivatives have a wide
range of medical effects, their inherent physicochemical parameters, such as poor water solubility, chemical instabi-
lity, low bioavailability, short half-life, and rapid metabolism, make their medicinal use challenging. Nanoparticle
drug  delivery  systems  can  enhance  the  efficacy  of  curcumin  in  treating  several  diseases,  especially  infectious
diseases.
This present study aimed to investigate the antibacterial effect of curcumin-loaded mesoporous silica nanoparticles
(Cur-MSNs) on S. mutans and their biofilm form and adhesion.
Recently,  novel  approaches have been utilized to  overcome pharmacological  issues and increase the therapeutic
effectiveness  of  curcumin.  Among  them,  nanoformulation  has  been  reported  as  an  innovative  and  developing
technology to overcome these limitations.

Methods: In the present study, the antibacterial, biofilm inhibitory, and anti-adherence activities of free curcumin,
mesoporous silica nanoparticles (MSNs), and Cur-MSNs were assessed against S. mutans.

Results: The results showed that Cur-MSNs demonstrated more antibacterial effects against S. mutans than free
curcumin and MSNs (p<0.05).  The MICs spectrum of  Cur-MSNs,  free curcumin,  and MSNs was 128 µg/mL, 512
µg/mL,  and  1024  µg/mL,  respectively.  The  biofilm  inhibitory  effect  of  Cur-MSNs  was  32  times  more  than  free
curcumin (p<0.05). The bacteria adhesion after 12 hours in Cur-MSNs was significantly reduced compared with free
curcumin and MSNs.

Conclusion: The antibacterial activity of curcumin increased by its nanoformulation. These results indicated that
Cur-MSNs possess potential anti-cariogenic and anti-plaque properties, warranting further investigation through in
vivo experiments and clinical studies.

Keywords: Curcumin, Mesoporous silica nanoparticles, Antimicrobial effects, Antibacterial properties, Streptococcus
mutans, Biofilm.
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1. INTRODUCTION
Streptococcus  mutans  inhabits  the  human  oral  cavity

and is known as one of the main causes of caries [1, 2]. S.
mutans  attaches  to  surfaces  and  then  colonizes  the  oral
cavity, and creates biofilms [3]. Dental bacterial biofilm is a
mass of biofilm-forming bacteria, and the bacterial pheno-
type in the biofilm form is different from its planktonic form
[4]. The dental biofilm bacteria are much less sensitive to
adverse  growth  conditions,  such  as  biocide  agents  and
hydrodynamic  shear  forces  [5,  6].  Curcumin  is  a  natural,
yellow-orange, low molecular weight polyphenol compound
found in the root of the plant Curcuma longa, which is used
in  the  management  of  diabetes,  wound  healing,  and
treatment  of  cardiovascular  diseases  [7-9].

Different  investigations  reported  that  curcumin  is  a
potential herbal antibacterial agent against drug-resistant
bacteria  [10].  Furthermore,  curcumin  is  effective  against
oral  bacteria  which  is  related  to  dental  and  oral  diseases
[11]. One study demonstrated that curcumin could prevent
the  adherence  of  S.  mutans  [10],  while  another  reported
that  curcumin could  inhibit  the  activity  of  sortase  A  in  S.
mutans,  thereby  exerting  anti-adhesive  effects  that  may
contribute  to  the  prevention  of  dental  caries  [12].
Moreover,  blue  light-activated  curcumin  can  photoin-
activate the planktonic form of S. mutans, but its effects on
the  biofilm  form  of  S.  mutans  are  weak  [13].  For  these
reasons,  this  research  aims  to  determine  the  potential
application  of  curcumin  as  an  herbal  antimicrobial  agent
and  highlights  the  importance  of  investigating  how
curcumin  performs  on  dental  and  oral  bacteria.

Curcumin  is  very  safe  for  use  in  animals  and  humans
and has low toxicity even at high doses [14]. However, its
low bioavailability, poor stability, and low solubility, along
with  a  short  half-life,  have  limited  the  clinical  usage  of
curcumin  [15,  16].  To  overcome  these  limitations,  nano-
formulation has been introduced as an advanced technology
[17-20].

Curcumin  nanomaterials  have  shown  greater  thera-
peutic results than free curcumin in various in vitro and in
vivo  investigations.  Drug  delivery  through  nanoparticles
can enhance the efficacy of curcumin in several diseases,
especially infections [21-24].

Various  recent  research  works  have  focused  on  the
application of silica nanoparticles as carriers [25]. Proper-
ties of inorganic silica, such as topology, surface area, and
size, can be modified to generate distinct interactions with
different  types  of  biological  systems  [26].  Furthermore,
mesoporous  silica  has  advantageous  properties,  such  as
high  pore  volume,  large  surface  area,  and  tunable  pore
morphological structures, which make it suitable for use
as  a  nanocarrier  [27].  In  the  case  of  encapsulating  pro-
drugs in organic nanoparticles, the rapid decomposition of
the organic material leads to the fast release of the drugs.
Mesoporous  silica  nanoparticles  (MSNs)  allow  for  the
prolonged  release  of  drugs  compared  to  organic  nano-
particles  because  the  drugs  are  trapped  inside  the
nanopores [28, 29]. MSNs can load natural agents, such as
curcumin,  to  exert  significant  antimicrobial  actions  [30,
31].

Despite progress in dental care, caries remain an im-
portant  health  concern.  Sometimes,  traditional  agents
often fail to eradicate bacteria, leading to persistent infec-
tions and resistance. Loading curcumin in MSNs can incr-
ease its delivery and efficacy against caries-causing bac-
teria. This study addresses the research gap by evaluating
the  antibacterial  efficacy  of  curcumin-containing  MSNs
against S. mutans, thereby providing a novel and effective
strategy to improve dental health and combat caries. The
present study aims to investigate the antibacterial effect
and  biofilm  inhibition  of  curcumin-loaded  mesoporous
silica  nanoparticles  (Cur-MSNs)  against  S.  mutans.  In
addition,  it  investigates  the  impact  of  Cur-MSNs  on  the
adhesion of S. mutans to surfaces.

2. MATERIALS AND METHODS

2.1. The Antibacterial Activity
In our previous study, Cur-MSNs were prepared via a

chemical precipitation technique and then were physico-
chemically characterized [32]. For the preparation of Cur-
MSNs, 1000 mg of  MSNs powder (Temadkala,  Iran) and
curcumin (Sigma Aldrich, USA) (100 mg) were suspended
in 50 mL of dimethyl sulfoxide (DMSO) via ultrasonication.
Then,  the  prepared  suspension  was  stirred  for  24  h  and
centrifuged at 17,000 rpm for 30 min. The resulting Cur-
MSNs precipitates were washed with ethanol and dried in
an oven [32].

The average particle size of Cur-MSNs was 92 nm. The
pattern of XRD showed that Cur-MSN had a mesoporous
structure  related  to  the  MCM-41  family.  TEM  image
demonstrated rod-shaped mesoporous nanoparticles. The
curcumin loading efficiency in MSNs was 82% [32].

The  antimicrobial  effects  of  compounds  and  controls
were  studied  on  S.  mutans  ATCC  35668.  All  steps  were
repeated  three  times.  The  antibacterial  effect  of  free
curcumin  and  Cur-MSNs  was  assessed  using  the  broth
microdilution method to evaluate the minimum inhibitory
concentration  (MIC)  according  to  the  Clinical  and
Laboratory Standards Institute (CLSI) protocol [33]. Serial
two-fold dilutions of free curcumin, MSNs, and Cur-MSNs
were prepared in varying concentrations and added to a
bacterial  suspension  (0.5  McFarland)  in  BHI  broth,
followed by incubation at 37°C for 24 hours. The control
contained only broth medium inoculated with bacteria and
was incubated for 24 hours at 37°C. The MIC value was
considered the lowest concentration of Cur-MSNs, MSNs,
and free curcumin, which completely inhibited S. mutans
growth as detected by the naked eye.

2.2. Inhibitory Activity on Biofilm
The  minimum  biofilm  inhibitory  concentration  (MBIC)

was evaluated for MSNs, free curcumin, and Cur-MSNs. In
the  first  step,  0.1  mL  of  bacteria  suspension  (0.5  Mc
Farland) and 0.1 mL of TSB were added to the microplate
wells.  To  stimulate  biofilm  production,  TSB  containing
0.25% glucose was added to the microplate and maintained
in  an  incubator  at  35°C  for  24  hours.  Then,  serial
concentrations  of  MSNs,  Cur-MSNs,  and  free  curcumin
were added and incubated for 24 hours at 35°C. In the next
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step, the content of the wells was removed and washed with
sterile water. The OD of the wells was read at a wavelength
of 650 nm before and after incubation at 35°C for 6 h. The
biofilm  inhibitory  concentration  is  defined  as  the  lowest
concentration of an antibacterial agent, which results in an
OD650 nm difference of ≤10% from the mean OD of the two
positive control wells [34].

2.3. Bacterial Attachment
The 0.5 MIC as sub-inhibitory concentrations were used

to evaluate the inhibitory action of Cur-MSNs, MSNs, and
free curcumin on biofilm formation. Fresh TSB (1:20) with
and without the mentioned substances was used to dilute
the  overnight  bacterial  culture.  Then,  the  bacterial  sus-
pension  was  added  to  the  wells  and  incubated  at  35°C.
After 24 hours, the content of the wells was removed, and
the generated biofilms were rinsed with sterile water and
methanol used for fixing them. The wells were then allowed
to  dry  and  stained  with  crystal  violet  solution.  The  33%
acetic acid was used for biofilm dissolution. Lastly, the OD
of  the  wells  was  read  at  492  nm.  Wells  containing  TSB
without bacteria were used as negative controls.

2.4. Statistical Analysis
One-way ANOVA and t-test were carried out to calculate

the  antibacterial  and  antibiofilm  effects.  The  significance

level of p<0.05 was considered. To assess the normality of
data,  we  conducted  normality  tests  on  the  antimicrobial
effect  data  for  each  compound and control  group (MSNs,
curcumin, and Cur-MSNs). Specifically, we carried out the
Shapiro-Wilk  test  due  to  its  robustness  for  small  sample
sizes.

3. RESULTS
Cur-MSNs  exhibited  an  antibacterial  effect  on  S.

mutans,  which  was  more  pronounced  than  free  curcumin
and MSNs (p<0.05) (Fig. 1). The MICs spectrum of MSNs,
free curcumin, and Cur-MSNs was 1024 µg/mL, 512 µg/mL
and 128 µg/mL, respectively.

The biofilm inhibitory effect of Cur-MSNs was 32 times
greater than that of curcumin (p<0.05) (Fig. 2).

The adhesion of bacteria to surfaces was assessed to
evaluate  the  effect  of  Cur-MSNs  at  sub-MIC  levels  (0.5
MIC).  The  adhesion  of  bacteria  after  12  hours  in  Cur-
MSNs was significantly reduced compared with free cur-
cumin, MSNs, and control (grown of bacteria without any
treatment) (Fig. 3).

In  the  present  study,  it  was  found  that  Cur-MSNs
decreased  attachment  of  S.  mutans  at  sub-MIC  levels
(p<0.05).

Fig. (1). The inhibitory effects of MSNs, curcumin, and Cur-MSNs on S. mutans. (*) and (**) indicate p ≤0.05 compared with MSNs and
curcumin, respectively.
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Fig. (2). The bacterial biofilm inhibition of MSNs, free curcumin, and Cur-MSNs. (*) and (**) indicate p≤0.05 compared with MSNs and
curcumin, respectively.

Fig. (3). Effect of free curcumin, MSNs, and Cur-MSNs on the bacterial attachment to the plastic surface. (#), (*) and (**) and indicate
p≤0.05 compared with control, MSNs and curcumin, respectively.
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4. DISCUSSION
Nanoparticles  containing  drugs  may interact  with  bac-

teria by two probable mechanisms: one, nanoparticles may
integrate  with  bacterial  cells'  surface  to  raise  the  perme-
ability to antibacterial agents, and the other, nanoparticles
may be  absorbed by  the  cell  wall  of  bacteria  and  act  as  a
reservoir for the antibacterial agent release [35].

Cur-MSNs exhibited an antibacterial effect on S. mutans,
which was more significant than free curcumin and MSNs
(p<0.05).  The  antibacterial  effects  of  curcumin  on  gram-
positive  and  gram-negative  bacteria  were  also  confirmed.
Cheng et al. prepared core-shell magnetic MSNs bonded to
intermittent  mesoporous  periodic  organic  silica  with
different loading properties. Curcumin and gentamicin were
separately  loaded  into  the  hydrophobic  and  hydrophilic
spaces, respectively, to create a dual-function antibacterial
and anticancer nanoformulation [36].

A trio-hybrid nanocomposite of MSNs containing curcu-
min  and  copper  and  decorated  with  nanoparticles  of  Ag
showed  the  photokilling  effect  against  E.  coli  [37].  In  a
study, a nanocomposite of curcumin-loaded MSNs and chito-
san was produced and showed antibacterial activity against
S. aureus and E. coli in the disc diffusion test [38].

Li and coworkers prepared a hybrid hemostatic organic-
inorganic  material  via  the  electrospinning  method  by
incorporating  the  MSNs  containing  curcumin  into  PVP
nanofibers. They showed increased antibacterial effects by
hybrid  nanofibers  against  methicillin-resistant  S.  aureus
(MRSA)  in  vitro  [39].

Curcumin nanoformulations improved the antimicrobial
effect of bulk curcumin against different microbes [40, 41].
Negahdari  and  coworkers  prepared  nanocrystals  of
curcumin  and  investigated  their  effects  against  Entero-
coccus  faecalis,  S.  aureus,  and  E.  coli  inside  the  implant
fixture. Curcumin nanocrystals decreased bacterial colony-
forming  unit  (CFU)  significantly  (p<0.01)  over  the  incu-
bation  period  [24].  Maleki  Dizaj  and  coworkers  evaluated
the effect of curcumin nanocrystals against Porphyromonas
gingivalis,  which  showed  MBC  of  12.5  μg/mL  and  MIC  of
6.25 μg/mL [42].

Antibacterial  drugs  can  affect  the  bacteria  in  plank-
tonic  form  but  may  not  be  effective  against  the  biofilm
form of the same bacteria [43]. Sometimes, eradication of
biofilm is difficult as a result of its antibacterial resistance.
Removing  the  infected  tissues  or  devices  is  critical  for
eradicating  biofilm-associated  infections  that  may  be
inconvenient or impossible in some cases. The usage of a
suitable delivery system for antimicrobial agents can help
eradicate  biofilms  [44].  Hence,  the  use  of  nanoformu-
lations  can  increase  the  sensitivity  of  biofilms  to  anti-
microbial  agents  [45].  In  this  study,  curcumin  and  Cur-
MSNs  inhibited  the  biofilm  formation  of  S.  mutans
(p<0.05).  The  biofilm inhibitory  effect  of  Cur-MSNs was
32  times  more  pronounced  than  that  of  curcumin
(p<0.05).

The attachment of bacteria is an important factor for
their colonization on surfaces. In the present study, it was
found that Cur-MSNs decreased attachment of S. mutans
at sub-MIC levels (p<0.05).

Pamukçu et al. prepared curcumin-loaded hyperbran-
ched  polyethylenimine-grafted  mesoporous  silica  nano-
particles  (F-MSN-PEI/Cur)  and  investigated  their  anti-
biofilm activity on Staphylococcus aureus  biofilm. It  was
found that F-MSN-PEI/Cur inhibited biofilm formation and
induced biofilm eradication [46].

Barros  et  al.  synthesized  curcumin-conjugated  silica
nanoparticles, which were able to hinder the biofilm for-
mation  of  model  P.  putida  by  up  to  50%  and  disrupt
mature  biofilms  by  up  to  54%  [47].

CONCLUSION
Silica  nanoparticles  containing  herbal  agents  with

extraordinary advantages, such as cost-effective prepara-
tion  and  exceptional  biocompatibility,  can  be  utilized  as
promising  nanoformulations  for  the  treatment  of  infec-
tions.  However,  more  evidence  is  required  to  prove  the
safety  and  therapeutic  efficiency  of  MSNs,  highlighting
the need for extensive research before drug-loaded MSN
systems can be translated to clinical applications. Critical
evaluation of clinical data on side effects has reported that
herbal  drugs  are  usually  better  tolerated  than  synthetic
drugs.  Nevertheless,  potentially  serious  complications,
including  plant  interactions,  have  been  described.  This
requires vigilance when using herbal medicines, especially
in certain situations, such as the pediatric population and
during pregnancy.

This  study  demonstrated  the  antibacterial  effect  of
curcumin nanocrystals against S. mutants in vitro, which
could  have  anti-caries  and  anti-plaque  effects.  However,
the clinical use of Cur-MSNs may be challenged by issues,
such  as  toxicity,  stability  in  the  oral  environment,  and
scalability  of  the  production  process.  To  ensure  the
biocompatibility of these nanoparticles and their safe use
in  humans,  it  is  necessary  to  conduct  further  additional
studies.
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