ISSN: 1874-2106 1

RESEARCH ARTICLE

OPEN ACCESS

Determination of Antibacterial Activity of Commiphora Myrrha and Ziziphus spina-christi Leaf Extracts Against Porphyromonas gingivalis in Patients with Fixed Partial Dentures with Chronic Periodontitis - An In Vitro Study

Amal Qasim Ahmed¹, Rusul Subhi Hassan^{2,*}, Maytham Adil Sadiq³, Suha Mohammed Sami⁴, Abtesam Imhemed Aljdaimi⁵, Nabaa Basim Alhusseini⁶, Rasha A. Alamoush⁷ and Suhad Jabbar Hamed Al-Nasrawi⁸

Abstract:

Introduction: Porphyromonas gingivalis (P. gingivalis), a highly studied black pigmented bacterium, is thought to be associated with chronic periodontitis. It makes up a significant portion of the subgingival microbiota found in periodontal pockets. Natural antibacterial compounds derived from plants could be potential substitutes for the traditionally employed chlorhexidine. Thus, the aim of this study was to investigate the antibacterial properties of alcoholic extracts from the leaves of Ziziphus spina-christi (ZSC) and Commiphora myrrha (C. myrrha) in vitro, both individually and in combination, against the P. gingivalis.

Materials and Methods: Clinical samples of subgingival plaque were taken from patients who had fixed partial dentures with chronic periodontitis. The presence of the target microorganism was verified *via* Gram's stain and biochemical tests. Ethanol extracts were prepared from the leaves of ZSC and C. myrrha *in vitro*. Antibacterial effects of different concentrations of the olive leaf extracts (20%, 40%, 60%, 80% and 100%) were tested both individually and in combination, against the P. gingivalis, and compared with those of deionized water and 0.2% chlorhexidine gluconate. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and susceptibility of the bacteria to the extracts were measured both individually and in combination.

Results: P. gingivalis growth was significantly inhibited by ethanol extracts at different concentrations (20%, 40%, 60%, 80% and 100%), resulting in varying degrees of growth inhibition. Researchers have demonstrated that a combination of extracts (Commiphora myrrha and Ziziphus spina-christi leaf extracts) has greater antibacterial effects than chlorhexidine, followed by individual extracts from C. myrrha and ZSC. The MICs of the extracts varied between 0.2 and 0.6 g/ml. The alcoholic extracts had MBCs ranging from 0.4 to 0.8 g/ml.

Discussion: A prevalent public health issue, periodontal diseases have little chance of being prevented. Therefore, it is crucial to look for possible substitutes for synthetic substances. These plants' or their extracts' antibacterial properties may serve as a source for novel antibiotics.

Conclusion: Each extract exhibited both bacteriostatic and bactericidal properties and was effective against P. gingivalis. The combined alcoholic extract had the strongest antibacterial activity against P. gingivalis at all the tested concentrations. Therefore, it can be considered a potential alternative to chlorhexidine.

Keywords: Commiphora myrrha, Chlorhexidine, Periodontitis, *Porphyromonas gingivalis, Ziziphus spina-christi*, Plaque.

¹Department of Prosthodontology, Faculty of Dentistry, Kufa University, Najaf, Iraq

²Department of Periodontology, Faculty of Dentistry, Kufa University, Najaf, Iraq

³Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Kufa University, Najaf, Iraq

 $^{^4}$ Oral and Maxillofacial Surgery, Department of Oral Surgery, Faculty of Dentistry, University of Kufa, Najaf, Iraq

⁵Department of Conservative Dentistry, School of Dentistry, Alasmarya Islamic University, Zliten, Libya

⁶Department of Basic Sciences, Faculty of Dentistry, Kufa University, Najaf, Iraq

⁷Department of Fixed and Removable Prosthodontics, School of Dentistry, University of Jordan, Queen Rania Street, Amman 11942, Jordan

⁸Department of Conservative Dentistry, Faculty of Dentistry, University of Kufa, Najaf, Iraq

© 2025 The Author(s). Published by Bentham Open.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

*Address correspondence to this author at the Periodontics, Department of Periodontology, Faculty of Dentistry, Kufa University, Najaf, Iraq; E-mail: rusuls.alhussain@uokufa.edu.iq

Cite as: Ahmed A, Hassan R, Sadiq M, Sami S, Aljdaimi A, Alhusseini N, Alamoush R, Al-Nasrawi S. Determination of Antibacterial Activity of Commiphora Myrrha and Ziziphus spina-christi Leaf Extracts Against Porphyromonas gingivalis in Patients with Fixed Partial Dentures with Chronic Periodontitis - An In Vitro Study. Open Dent J, 2025; 19: e18742106360052. http://dx.doi.org/10.2174/0118742106360052251006080008

Received: November 30, 2025 Revised: April 30, 2025 Accepted: May 13, 2025 Published: November 13, 2025

Send Orders for Reprints to reprints@benthamscience.net

1. INTRODUCTION

The accumulation of biofilm at the gingival line of the tooth surface triggers an inflammatory response known as periodontal disease [1-3]. According to the classification system proposed by the American Academy Periodontology, periodontal diseases are classified into two basic categories, namely, gingivitis and periodontitis, according to whether the periodontal attachment has been damaged [4]. The inflammatory process of the gingiva is thought to be a predisposing factor for periodontitis; hence, treating gingivitis is crucial for the principal prevention of this disease [4-7]. Over 50% of adults worldwide suffer from periodontitis, a condition that worsens with advancing age. The 2010 Global Burden of Diseases Study recognized severe periodontitis as the sixth most common human disease and a major contributor to tooth loss [8, 9]. Severe periodontitis poses a serious public health risk since it negatively affects speech, diet, confidence, quality of life, and oral health. It is also independently linked to a number of systemic chronic inflammatory disorders [10-13]. A typical therapy for partially edentulous ridges is a fixed partial denture (bridge), which is an excellent way to replace missing teeth. However, the stability and health of the surrounding periodontal system are crucial for bridge effectiveness [14]. A substantial amount of research has shown that having permanent prosthetic restorations is associated with a greater risk of periodontal disease [11]. Periodontal health has a major impact on the durability of prosthodontic restorations. On the other hand, a poorly designed prosthesis may accelerate the development of periodontal disease [15, 16].

Many bacteria are thought to be linked to chronic periodontitis [1, 4, 17, 18]. The primary species involved in the development of chronic periodontitis is P. gingivalis [19-22], which can be detected in up to 85% of periodontitis cases [4]. They are rod-shaped, gram-negative, non-motile, black-pigmented, opportunistic species that require anaerobic growth conditions, as well as the presence of vitamin K and heme or hemin in their nutritional environment [18, 23]. This ability is necessary for survival in deep periodontal pockets where carbohydrates are extremely scarce [19]. P. gingivalis is one of three bacterial associations known as the "red complex," which also includes the gram-negative bacteria Tannerella forsythia and Treponema denticola. Recent research has revealed that P. gingivalis is the primary pathogen within the red complex, contributing to microbial imbalance and causing disease progression [5, 19, 24, 25].

The first step in the treatment of periodontal disorders is to manage the buildup of dental plaque linked to scaling and root planning, which enables the removal of calculus and biofilm [26]. Since systemic antibiotics may fail to control the severity of the disease, they are currently exclusively recommended for the treatment of rapidly progressing periodontitis. Numerous systemic antibiotics have shown a number of side effects, including high peak plasma antibiotic concentrations, the emergence of microbial resistance, rapid decreases in antibiotic concentrations to subtherapeutic levels, insufficient antibiotic concentrations at the periodontal pocket site, high incidences of allergies, and increased costs. The fact that some periodontal bacteria can enter host cells is another element that works against antibiotics [1, 2].

The identification of new antibacterial chemicals has become a key priority in recent years because of the difficulty in developing effective strategies for treating chronic periodontitis [1, 27]. Since plant-derived products are a source of chemical agents with antibacterial gualities. they have been utilized for medical purposes for several years [28-30]. Owing to their long history of use in traditional medicine and their natural, non-chemical, and non-synthetic nature, significant herbal extracts have drawn attention [31]. Flavonoids, polyphenols, and alkaloids are among the compounds found in many plants used in traditional medicine. One such plant is Commiphora Myrrha (C. Myrrha), which was introduced as an analgesic for toothaches and as an antiseptic in toothpastes and mouthwashes [32]. The antibacterial activity of these plants suggests possible sources for the development of novel antibiotics [33-35]. Another common plant, Ziziphus spinachristi (Z. spina-christi), is a plentiful and reasonably priced source of novel antibacterial compounds [36-38]. Z. spinachristi has been used as an alternative medicine for many years to treat inflammatory problems, fever, pain, dandruff, wounds, ulcers, and eve diseases [39]. Recent research has demonstrated the antibacterial, antifungal, antioxidant, and antihyperglycemic properties of *Z. spina-christi*.

This study investigated the potential antibacterial properties of extracts from C. myrrha and $Ziziphus\ spina-christi$ leaves (ZSCs) against P. gingivalis, a bacterium that is one of the primary inhabitants of dental plaque. The null hypothesis was stated that there is no significant antibacterial effect of the tested extract on P. gingivalis.

2. METHODOLOGY

2.1. Selection of Patient and Sample Technique

Fifteen healthy people with fixed dental partial bridges and chronic periodontitis, aged between 35 and 55 years, were selected systematically and included in the study. Pregnancy status, smoking status, use of anti-inflammatory or antibiotic medications through the last three months, and any periodontal or professional cleaning within the last six months were the basis for the exclusion criteria. Samples of subgingival plaque were taken from patients who attended the periodontics clinic at the teaching hospital of Kufa University's Faculty of Dentistry, where the depth of the probing pocket (PPD) of the abutment of a fixed partial denture was at least 6 mm.

The samples were collected from March 2024 to April 2024, and the present in-vitro study was conducted at Kufa University's faculty of dentistry. The protocol of this study was ethically approved by the Medical Ethical Committee, College of Medicine, University of Kufa (reference #MEC-26, Date 15/3/2024). The patients were informed of the study's objective and provided their consent before being included. To eliminate supragingival plaque, the tooth was sprayed with water and then air-dried. To prevent salivary contamination, the area was sealed with cotton rolls. The subgingival plaque was carefully removed from the depth of the pocket using periodontal Gracey curettes so as not to damage nearby tissue. Less than 30 minutes after sample collection, the subgingival plaque was placed on a swab and directly transferred into the transfer medium to preserve the sample.

After that, the samples were incubated on blood agar media for 72 hours at 37°C in an anaerobic jar and anaerobic gas packs. Then, the bacteria were identified based on their microscopic appearance, colony shape and size, presence of Gram-stained bacteria, and the outcomes of biochemical testing, including those for urease, hemolytic capacity, catalase, and antibiotic susceptibility. To obtain pure cultures of *P. gingivalis* for the purpose of detecting the inhibition zone, colonies were subcultured once more on the same media under anaerobic conditions for a duration of 72 hours, following the same protocol.

2.2. Preparation of Culture Media

2.2.1. Blood Agar

In accordance with the guidelines provided by the manufacturer, a blood agar base (beef heart infusion from beef extract, sodium chloride, tryptose, and agar) was made by suspending 40 grams in 1000 milliliters of distilled water (D.W.). The medium was then heated to the boiling point for 5 minutes to completely dissolve it, after which it was autoclaved for 15 minutes at 121°C for sterilization. After the medium was cooled to approximately 50°C, 5% sterile blood was aseptically added and thoroughly mixed, and the medium was then poured into sterile Petri dishes under an ultraviolet (UV) sterilization hood.

2.2.2. Porphyromonas Gingivalis Agar

Powdered selective medium made of Colombian blood agar combined with vitamin K, bacteriocin, and antibiotics (clindamycin) was used. A complete medium dissolves when twenty grams of the powder is suspended in 500 millilitres of D.W. and heated to the boiling point. The media were subsequently autoclaved for 15 minutes at 121°C to sterilize them. They were then allowed to cool to approximately 50°C before being aseptically mixed in 50 ml of sterile blood and placed into sterile Petri dishes under a UV sterilization hood.

2.2.3. Thioglycolate Broth Liquid Media Suitable for Anaerobic Microorganisms

Yeast extract, tryptone, glucose, sodium thioglycolate, sodium chloride, L-cystine, resazurin, and agar were the ingredients in the thioglycolate powder. A total of 29.75 grams of the powder was mixed in 1 liter of D.W. Then, the mixture was completely boiled and autoclaved at 121°C for 15 minutes. The mixture was then permitted to cool to approximately 25°C before being refrigerated.

2.3. Extraction Procedures

At the Ibn-AL-Betar Research Center, a division of the Ministry of Industry and Minerals, the procedure for extracting ZSC leaves and C. Myrrha was completed (Fig. 1). ZSC leaves were collected from farms in the city of Najaf. The procedure suggested by Temerk et al. [40, 41] was used to produce extracts from ZSC leaves. The ZSC leaves were subsequently allowed to air dry at room temperature after being cleaned with tap water and then distilled water. Using an electric blender, the dried leaves were ground into a coarse powder and stored in a dry, clean container for later use. ZSC leaves weighing 100 grams were dissolved in 500 ml of 70% ethanol. A filter paper (WhitmanTM no. 1) was used to filter the solution after it had been shaken for eight hours at room temperature with the aid of a shaker. The filtrate was allowed to dry completely at room temperature to evaporate any remaining solvent. The resulting powder was then collected and stored at room temperature in a tightly sealed, dark glass container until solutions with different concentrations were obtained.

Myrrha and oleo-gum-resin from *Commiphora myrrha* (C. Myrrha) were purchased from a standard commercial source (Najaf, Iraq). The materials were divided into smaller parts, cleaned with distilled water, and then dried at 37°C in an incubator. They were subsequently ground into a fine powder using an electric blender [41]. The resin was filtered through WhatmanTM no. 1 filter paper after it had been ground to a particle size of 100 gm and allowed to percolate in 70% ethanol concentrated at 40-60°C for eight hours in a sonic bath. A rotary evaporator was used to extract the solvent under vacuum. After that, the mixture was dried even more using a hot air oven at 40°C. The thick sticky paste that was produced was then stored in a refrigerator until it was needed to make solutions with various concentrations [42].

Fig. (1). (a) Leaves of Ziziphus spina-christi and (b) Myrrha resin.

The extracts were stored for no longer than one month, as longer storage times caused the *C. Myrrha* and ZSC extracts to lose some of their inhibitory effects [43]. Dimethyl sulfoxide (DMSO) was used to dissolve the extracts to various concentrations for the alcoholic *C. Myrrha* and ZSC extracts. A vortex mixer was used to create homogeneous solutions. Both extracts were treated in the same way, and the results are as follows.

To obtain a 20% concentration, (1 gm) of the extract was dissolved in 5 ml of DMSO.

To obtain a 40% concentration, (2 gm) of the extract was dissolved in 5 ml of DMSO.

To obtain a 60% concentration, (3 gm) of the extract was dissolved in 5 ml of DMSO.

To obtain an 80% concentration, (4 gm) of the extract was dissolved in 5 ml of DMSO.

To obtain a 100% concentration, (5 gm) of the extract was dissolved in 5 ml of DMSO [44].

To create a 20% concentration combination mixture, the mixing procedure described by Stephenson [45] began with the addition of 1 mL each of the alcoholic C. Myrrha and ZSC leaf extracts from their corresponding 20% concentrations, then creating homogeneous solutions *via* a vortex mixer. This process was repeated to create other concentrations of the combination mixture.

2.4. Experiments of the Study

2.4.1. Experiment No.1

To evaluate the sensitivity of $P.\ gingivalis$ to the ZSCL and alcoholic Myrrha separately and in Combination, these experiments were conducted using four isolates of $P.\ gingivalis$. The disk diffusion technique was applied to study the antibacterial effects of varied conc. of C. Myrrha and ZSCL extracts (20%, 40%, 60%, 80%, 100%) separately and in combination compared with deionized water (D.W.) as a negative control and chlorhexidine gluconate 0.2% as a positive control.

2.4.1.1. Procedure

Using a sterile loop, three colonies were selected from the pure culture plate and spread onto a blood agar plate in a mattress fashion. Afterward, wells of uniform size and depth were prepared in the agar using a Pasteur pipette, which had been sterilized by direct flame. Each well was then filled with 100 microliters of the selected agent. The plates were incubated anaerobically for 48 hours.

The diameter of the inhibition zone around each well was measured in millimeters using a ruler. A zone of inhibition indicates a clear area around the well where no bacterial growth is present, demonstrating the effectiveness of the agent. In contrast, the absence of a zone of inhibition indicates complete resistance of the bacteria to the tested agents.

2.4.2. Experiment No. 2

Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ZSCL extracts and alcoholic C. Myrrha was carried out separately and together against $P.\ gingivalis$ by serial micro dilution procedure. The first serial dilution method was used to standardize the bacterial inoculum. This experiment included three study groups and was conducted on four isolates of $P.\ gingivalis$, which were:

Group A: Alcoholic C. Myrrha extract against P. gingivalis.

Group B: Alcoholic ZSCL extract against P. gingivalis.

Group C: ZSCL extracts and alcoholic C. Myrrha in combination against *P. gingivalis*.

For each study group, there was a negative control (D.W.) and a positive control, which was CHX gluconate 0.2%.

2.4.2.1. Procedure

2.4.2.1.1. Serial Microdilution

A sterile microtiter (96-well plate) was prepared near an alcohol burner in an aseptic atmosphere for the serial dilution method to standardize. Using a micropipette, 150 μ l of fresh thioglycolate broth was dispersed into one of the microtiter plate wells. Using a flamed loop, cooled at the corner of an agar plate, a colony of each microorganism was chosen and then inserted into a well, one for each organism. After that, we used the micropipette to transfer 15 μ l from the first well and placed it into the next well. We then completed the other 135 μ l with fresh thioglycolate broth to achieve a total volume of 150 μ l. The procedure was repeated 5 times in 5 consecutive wells to obtain 5 serial dilutions of a 1:10 ratio each time. Each well was stamped with the number of its dilution (e.g., zero for the first well, 5 for the 5th dilution well, and so on).

2.4.2.1.2. Determination of MIC

Tubes of Appedroff were labeled and regulated in a rack. For each tube, 100 μL of bacterial suspension was added, followed by the addition of 50 μL of the tested agent to its designated tube. Then, anaerobic incubation for 72 hours was performed on the tubes. Following incubation, the tubes were checked to evaluate the presence of any turbidity, which would indicate bacterial growth. Tubes that lacked turbidity were identified as the MIC, while those exhibiting turbidity signs were excluded.

2.4.2.1.3. Determination of MBC

Asubculture was made from the tubes that were identified as the MIC in order to estimate the MBC. A volume of 150 μl was picked up from each tube utilizing a micropipette and spread on a blood agar plate with a sterile spreader and incubated anaerobically for 48 hours. After the incubation period, the plates were removed and checked for bacterial growth. The plates that showed no growth were identified as the minimum bactericidal concentration.

2.5. Statistical Analysis

The statistical analysis was performed with the social science statistical package version 22.0 of the SPSS statistical software program (IBM Corp., Armonk, USA).

The mean and standard deviation of the data were obtained. The level of significance was set at 0.05. The inhibition zones at different concentrations for each type of extract were statistically analyzed using independent sample t tests and one-way analysis of variance (ANOVA).

3. RESULTS

3.1. Identification of Porphyromonas Gingivalis

3.1.1. Colony Morphology

P. gingivalis colonies were inspected and identified on the blood agar plates. The colonies had a raised or convex surface, with spherical shape, black pigmentation, and firm attachment to the agar surface (Fig. 2a). Pg cells were revealed under a microscope to be gram-negative (red in color) rods arranged in short or medium-length chains (Fig. 2b).

3.1.2. Biochemical Tests

A- When Porphyromonas gingivalis colonies were tested with catalase, no bubbles surrounded them, indicating that the colonies were catalase negative (Fig. 3a). No coagulation of human serum was detected using the B-coagulase test, revealing coagulase negativity (Fig. 3b). After 72 hours of incubation, P. gingivalis revealed no change in the yellow color of the urea solution during the C-Urease test, indicating that the colonies were urease negative (Fig. 3c). When P. gingivalis colonies were grown on blood agar, clear zones were observed around them, revealing the hemolytic ability of Pg (Fig. 3d). The antibiotic disks had inhibition zones surrounding them, indicating that Pg was susceptible to both vancomycin and kanamycin (Fig. 3e).

3.2. Determining the Diameter of the Bacterial Inhibition Zones

In vitro sensitivity of *P. gingivalis* to various concentrations of alcoholic *C. myrrha*, ZSC leaves, and extract mixtures was evaluated. At 20% and 40% concentrations of the ZSC extract, no bacterial inhibition zones (BIZs) were observed, and the BIZ increased as the extract concentration increased.

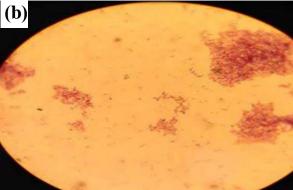


Fig. (2). (a) Pg on a blood agar plate and (b) microscopic appearance and Gram stain of Pg (1000×).

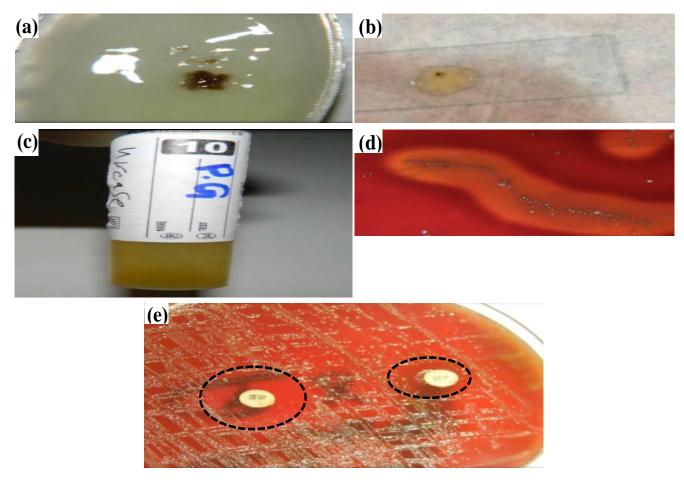


Fig. (3). (a) Catalase negative, (b) coagulase negative, (c) urease negative, (d) hemolytic ability, and (e) antibiotic sensitivity of Pg.

The ZSC extract had lower mean values of the BIZ than CHX, and C. myrrha combination extracts presented greater mean values than CHX at 60%, 80%, and 100% confluence. D.W. showed no BIZ, but 100% of the combination extracts had a maximum mean BIZ of 11.04 mm overall. Significant differences were detected between the various extract concentrations, both alone and in conjunction with CHX and DW, using a one-way ANOVA

test (Table 1). Statistically significant differences were found at all concentrations when Myrrha, Ziziphus, and combination extracts were compared between each pair of different concentrations (Table 2). There were statistically significant differences between CHX and D.W. at each concentration of C. myrrha, ZSC, or the combination extracts (Table 3). There were no significant differences only at 20% and 40% of ZSC.

Table 1. Statistical analysis of *P. gingivalis* BIZ in the presence of different concentrations of *C. myrrha*, ZSC, combination extracts, CHX, and D.W.

Agents	Conc.	Mean	±S.D.	ANOVA Test
CHX	HX 0.2%		0.09	-
D.W.	-	0 0		-
	20% (0.2 g/ml)	3.43	0.44	-
	40% (0.4 g/ml)	4.23	0.14	F=923.187
Myrrha extract	60% (0.6 g/ml)	7.15	0.13	P=0.00 S
	80% (0.8 g/ml)	9.35	0.27	d.f.=22
	100% (1 g/ml)	10.24	0.25	-
CHX	0.2%	7.03	0.08	-

(Table 1) contd.....

Agents	Conc.	Mean	±S.D.	ANOVA Test	
	20% (0.2 g/ml)	0	0	-	
	40%(0.4 g/ml)	0	0	F=297.76	
Ziziphus extract	60% (0.6 g/ml)	1.13	0.08	P=0.00 S	
	80% (0.8 g/ml)	3.03	0.06	d.f.=22	
	100% (1 g/ml)	6	0.01	-	
D.W.	D.W		0	-	
	20% (0.2 g/ml)	4.26	0.05	-	
	40% (0.4 g/ml)	6.21	0.140	F=216.482	
Combination extracts	60% (0.6 g/ml)	8.16	0.220.09	P=0.00 S	
	80% (0.8g/ml)	10.14	0.200	d.f.=22	
	100% (1 g/ml)	11.04	0.07	-	

Table 2. Comparisons of the mean *P. gingivalis* BIZ between each pair of different concentrations for the C. myrrha, ZSC, and combination extracts *via* the LSD test.

C	07.0	Myrrha Extract		Ziziphus I	Extract	Combination Extracts		
Conc.		Mean Difference	<i>p</i> -value/Sig	Mean Difference	<i>p</i> -value/Sig.	Mean Difference	<i>p</i> -value/Sig.	
20%	40%	-0.872	0.00 HS	1.25	0.00 HS	-2.07	0.00 HS	
	60%	-2.74	0.00 HS	1.13	0.00 HS	-4.05	0.00 HS	
-	80%	-5.93	0.00 HS	3.04	0.00 HS	-5.98	0.00 HS	
	100%	-6.92	0.00 HS	5.01	0.00 HS	-6.91	0.00 HS	
40%	60%	-1.95	0.00 HS	-1.14	0.00 HS	-1.98	0.00 HS	
	80%	-5.04	0.00 HS	-3.04	0.00 HS	-3.88	0.00 HS	
-	100%	-6.05	0.00 HS	-5.23	0.00 HS	-4.81	0.00 HS	
60%	80%	-3.04	0.00 HS	-1.91	0.00 HS	-1.91	0.00 HS	
-	100%	-4.08	0.00 HS	3.88	0.00 HS	-2.83	0.00 HS	
80%	100%	1.00	0.00 HS	1.98	0.00 HS	-0.93	0.00 HS	

Table 3. Comparisons of the mean values of *P. gingivalis* BIZ for each concentration of the alcoholic C. myrrha, ZSC, and combination extracts with CHX and D.W. according to the LSD test.

Eutwoote	Concentration	BIZ-CHX 0.2%	BIZ-D.W.
Extracts	Concentration	<i>p</i> -value	<i>p</i> -value
	20% (0.2 g/ml)	0	0
	40%(0.4 g/ml)	0	0
C. myrrha	60%(0.6 g/ml)	0	0
	80% (0.8 g/ml)	0	0
	100% (1 g/ml)	0	0
	20%(0.2 g/ml)	0	1
	40%(0.4 g/ml)	0	1
ZSC	60%(0.6 g/ml)	0	0
	80% (0.8 g/ml)	0	0
	100% (1 g/ml)	0	0
	20% (0.2 g/ml)	0	0
	40%(0.4 g/ml)	0	0
Combination	60%(0.6 g/ml)	0	0
	80%(0.8 g/ml)	0	0
	100% (1 g/ml)	0	0

BIZ-Combination Extracts BIZ-ZSC Extract BIZ-Combination Extracts BIZ-C. Myrrha Extract Concentration p-value p-value Mean ±S.D Mean ±S.D. Mean ±S.D Mean ±S.D. 20% (0.2 g/ml) 0.064 0 3.43 ± 0.44 4.26 ± 0.05 0 ± 0 0.05 ± 4.26 40% (0.4 g/ml) 0 0 4.23 ± 0.14 6.21 ± 0.140 0 ± 0 0.140 ± 6.21 60% (0.6 g/ml) 0 0 7.15 ± 0.13 8.16 ± 0.22 1.13 ± 0.08 0.22 ± 8.16 ----80% (0.8 g/ml) 0.004 0 9.35 ± 0.27 10.14 ± 0.20 3.03 ± 0.06 0.20 ± 10.14 100% (1 g/ml) 0.002 0.002

 11.04 ± 0.07

Table 4. Descriptive statistics and comparisons between the mean *P. gingivalis* BIZ for the same concentration of *C. myrrha* and of ZSC and combination extracts and C. myrrha and ZSC extracts via t-tests.

Table 5. MICs and MBCs of the extracts against P. gingivalis.

 10.24 ± 0.25

Combination Extracts		Ziziphus Extract		Myrrha Extract		Bacteria	
MBC	MIC	MBC	MIC	MBC	MIC	Dacteria	
40% (0.4 g/ml)	20% (0.2 g/ml)	80% (0.8 g/ml)	60% (0.6 g/ml)	40% (0.4 g/ml)	20% (0.2 g/ml)	P. gingivalis	

Overall, the comparisons shown in Tables $\bf 4$ and $\bf 5$ revealed that the combination extracts had the highest mean BIZ values against P. gingivalis at all concentrations, followed by the C. myrrha extracts, and finally the ZSC extracts. Therefore, statistically significant differences were detected at all concentrations, except for the non-significant difference at the 20% concentration between Myrrha and the combination extracts.

3.3. MIC and MBC

The MIC and MBC of alcoholic $C.\ Myrrha$ and the combination extracts were the same (20% or 0.2 g/ml and 40% or 0.4 g/ml, respectively), whereas those of the ZSC extract were 60% (0.6 g/ml) and 80% (0.8 g/ml), respectively (Table 5).

4. DISCUSSION

Commiphora myrrha has been approved as a safe natural flavoring agent for food and beverages, as well as a fragrance ingredient for cosmetics [46, 47]. Studies have shown that mouthwashes and toothpastes containing C. myrrha are effective in treating and preventing gingivitis [33, 48]. A diluted C. myrrha suspension aided in the healing and repair of animal tissues damaged in the mouth, according to one study [49].

On the other hand, ZSC leaf extracts have been employed as anti-inflammatory agents for toothache and eye washing [50]. The antibacterial activity of the anaerobic periodontal pathogen *P. gingivalis*, which was isolated from subgingival plaque, was compared with that of 0.2% CHX gluconate and various concentrations of *C. myrrha* and ZSC leaf extracts in this study. Importantly, this study's findings may be the first to demonstrate that the introduced herbal

mixture has never been prepared and examined for its effect on *P. gingivalis*.

0.07 ± 11.04

 6 ± 0.01

Despite their widespread availability, a number of chemical agents may alter the oral microbiota and result in undesirable side effects, such as tooth staining [51]. Owing to their ability to function as adjunctive therapies as well as preventative measures against plaque development, the use of herbal components is also gaining popularity. Numerous studies have examined the antibacterial effects of *C. myrrha* or ZSC alone on herbal preparations [52-54]; however, their combined effects on lowering microbial counts and plaque formation have not yet been investigated. While this study focused on bacteria linked to chronic periodontitis, other *in vitro* studies [44, 55, 56] have examined the activity of natural plant substances against oral bacteria and have unambiguously established anticariogenic activity against bacteria associated with periodontal diseases.

According to the results of this study, there was a significant antibacterial effect for the tested extracts. Therefore, the null-hypothesis was rejected. According to the findings of this study, the diameter of the BIZ also increased as the extract concentration increased. This occurred because the antimicrobial activity of the extracts increased as a result of an increase in the amount of dissolved active antibacterial components. According to the mean values of IZ, the combination extracts (60%, 80%, and 100% conc.) against *P. gingivalis* were the most effective antimicrobial agents. Compared with CHX and ZSCC. *Commiphora myrrha* was the next most effective agent (60%, 80%, and 100% conc.).

Referring to phytochemical analyses of oleogum resins [57], sesquiterpenes and furanosesquiterpenes are two of the main constituents of $C.\ myrrha$. Since a sesquiterpenoid

found in C. myrrha is thought to play a major role in antibacterial activities, these results verified the antibacterial activity of the gum resins [58, 59]. Sesquiterpenes have bactericidal rather than bacteriostatic antimicrobial effects; they interact with the cell envelope to cause bacterial lysis and subsequent lethal loss of intracellular material [60], while phytochemical analysis [61], suggested that the antibacterial activity of plant species might be attributed to the presence of alkaloids, carbohydrates, and saponins found in *C. myrrha* extracts.

Tannins are another important element that affects the function of bacteria and enzymes [62]. Further studies have shown that the inhibitory impact of Myrrha extract might be due to the presence of large single terpene molecules known as volatile oils. The ability of these oils to modify the cell wall also weakens the biological activity of the cell by causing it to overlap with the cytoplasmic membrane. This is demonstrated by the ability of these oils to impede and halt the synthesis of new proteins, which prevents ions and salts from actively passing across this membrane [63]. Furthermore, a significant study [64, 65] revealed that Myrrha would have good antibacterial effects if it contained secondary metabolites, such as flavonoids, alkaloids, tannins, and glycosides, as well as flavonoid tannins, glycosides, and saponins. According to a different study, these plants' phenolic compounds may have antimicrobial properties [66].

While P. gingivalis was sensitive to various alcoholic ZSC concentrations (apart from 0.2 g/ml and 0.4 g/ml, which had no antibacterial effects), its IZ values were lower for 0.6 g/ml, 0.8 g/ml, and 1 g/ml than for 0.2% CHX; however, since 0.2% CHX is a natural herb, it was thought to be superior. Sider leaf extracts were shown to have inhibitory effects on S. faecalis at concentrations as high as 50 mg/ml, and at 200 mg/ml, IZ (13.33 mm) was found [67]. According to a different study [68], when combined with (13 mm) IZ, the ethanolic extract of Sider leaves had the highest activity against gram-positive bacteria at a dosage of 128 mg/L, whereas (8 mm) IZ had the lowest activity. These results revealed that the antibacterial effectiveness of the Sider ethanolic extract against the tested microorganisms increased when it was used at greater concentrations. Others have reported that the presence of multiple active ingredients, including flavonoids, phenolic compounds, alkaloids, and essential oils, is the reason behind the action of ZSC extracts [54]. Owing to the presence of active antimicrobial constituents that are sufficient to inhibit growth and damage the isolated bacteria to a degree that is comparable to that of CHX, the diameters of BIZ produced by the combination extracts and Myrrha at 60%, 80%, and 100% concentrations were significantly greater than those produced by 0.2% CHX for P. gingivalis. As a result, the use of C. myrrha alone or in combination with ZSC extracts produces antibacterial effects that may be a good substitute for CHX.

When the C. Myrrha extract was mixed with the other extracts, the MIC was 20%; however, the ZSC extract had an MIC of 60%. Plant extracts with MICs of less than or equal to $0.5\,$ mg/ml demonstrated good antibacterial activity. Consequently, the ethanol extracts of C. myrrha

and the combined extracts demonstrated strong anti-bacterial activity against *P. gingivalis*.

The alcoholic C. Myrrha extract exhibited a bactericidal effect against P. gingivalis, as evidenced by the MBC of 0.4 g/ml required to kill the pathogen. While the MBC of the combination extracts that killed P. gingivalis isolate growth was 40% (0.4 g/ml), indicating the bactericidal effect of the combination extracts, the MBC of the ZSC leaf extract that killed P. gingivalis isolate growth was 80% (0.8 g/ml), indicating that the agent demonstrated a bactericidal effect. The MBC of the ZSC leaf extract against P. gingivalis was greater than that of C. Myrrha and the combination extracts. This difference may have resulted from the active antibacterial properties of the ZSC extract, which might only be present at high bacterial concentrations.

One of the limitations of this study is the use of a limited number of bacterial types. Another limitation was the testing of only the antibacterial effect of alcoholic extracts of the tested herbals. Therefore, for future work, the suggestions include the application of this extract and an agueous extract on various types of bacteria. Moreover, an in vivo study of the antiplaque effects and the substantivity of alcoholic C. Myrrha, ZSCL, and combination extracts as a mouth rinse, periodontal pocket irrigation, or gel on the improvement of periodontal health status, expressed through effects on plague, gingival, and bleeding indices in patients with periodontal disease, is recommended. Additionally, the effect of combination extracts as a gel on bacterial count in implant screw cavities should be studied. Further investigations concerning the safety and toxicity of C. Myrrha and ZSCL extracts are also necessary.

CONCLUSION

Combination extracts of *Ziziphus spina-Christi* (ZSC) and *Commiphora myrrha* (C. myrrha) have been found to be more effective than individual leaf extracts against *P. gingivalis*. As a result, they could be used in place of CHX to verify their effectiveness. The antimicrobial properties of *C. myrrha* and ZSC extracts as *P. gingivalis* inhibitors require additional *in vitro* and *in vivo* research. Due to their antimicrobial effects, these natural materials are suitable for use in toothpaste, mouthwash, and other products that help treat periodontal diseases. Notably, the inhibitory effects of *C. myrrha* and ZSC extracts decreased with increasing storage time.

AUTHORS' CONTRIBUTIONS

The authors confirm their contributions to the paper as follows: A.A.: Study conception and design; R.H. and M.S.: Data collection; N.A.: Data analysis or interpretation; R.A.: Methodology; S.S., A.A., and S.A.N.: Draft manuscript. All authors reviewed the results and approved the final version of the manuscript.

LIST OF ABBREVIATIONS

D.W. = Distilled Water
UV = Ultraviolet

ZSC = Ziziphus spina-Christi

BIZs = Bacterial Inhibition Zones

PPD = Probing Pocket Depth

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The protocol of this study was ethically approved by the Medical Ethical Committee, College of Medicine, University of Kufa, Iraq (reference #MEC-26, Date 15/3/2024).

HUMAN AND ANIMAL RIGHTS

All human research procedures followed were in accordance with the ethical standards of the committee responsible for human experimentation (institutional and national), and with the Helsinki Declaration of 1975, as revised in 2013.

CONSENT FOR PUBLICATION

Informed consent was obtained from the participants.

STANDARDS OF REPORTING

STROBE guidelines were followed.

AVAILABILITY OF DATA AND MATERIALS

The data supporting the findings of the article will be available from the corresponding author [R.H] upon reasonable request.

FUNDING

None.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

The authors are extremely appreciative of Dr. Julfikar Haider for his valuable contributions and guidance in preparing this study.

REFERENCES

- [1] Rao GHJ, Lakshmi P. Anti diarrhoeal activity of *Ziziphus Jujuba* leaf extract in rats. Int J Pharma Bio Sci 2012; 3(1): P532-8.
- [2] Jain N, Jain GK, Javed S, et al. Recent approaches for the treatment of periodontitis. Drug Discov Today 2008; 13(21-22): 932-43.
- http://dx.doi.org/10.1016/j.drudis.2008.07.010 PMID: 18789399
 [3] Ahmed MAA. Periodontal health status of patients with Maxillary Chronic Rhinosinusitis (Part 3: Associated factors and Correlations). Int J Adv Res Biol Sci 2016; 3(8): 218-25.
- [4] How KY, Song KP, Chan KG. Porphyromonas gingivalis: an overview of periodontopathic pathogen below the gum line. Front Microbiol 2016; 7: 53. http://dx.doi.org/10.3389/fmicb.2016.00053 PMID: 26903954
- [5] Aleksijević LH, Aleksijević M, Škrlec I, Šram M, Šram M, Talapko J. Porphyromonas gingivalis virulence factors and clinical significance in periodontal disease and coronary artery diseases. Pathogens 2022; 11(10): 1173. http://dx.doi.org/10.3390/pathogens11101173 PMID: 36297228
- [6] Salman SA, Ahmed MAA, Ali OH, Salah R, Obaid ZM. Antibacterial effects of Ziziphus Spina-Christi and Commiphora Myrrha leaves extracts against Streptococcus Oralis (in vitro

- study). J Pharm 2022; 5: 406-12.
- [7] Murakami S, Mealey BL, Mariotti A, Chapple ILC. Dental plaque-induced gingival conditions. J Clin Periodontol 2018; 45(S20): S17-27. http://dx.doi.org/10.1111/jcpe.12937 PMID: 29926503
- [8] Chapple ILC, Van der Weijden F, Doerfer C, et al. Primary prevention of periodontitis: managing gingivitis. J Clin Periodontol 2015; 42(Suppl. 16): S71-6. http://dx.doi.org/10.1111/jcpe.12366 PMID: 25639826
- [9] Kassebaum NJ, Bernabé E, Dahiya M, Bhandari B, Murray CJL, Marcenes W. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression. J Dent Res 2014; 93(11): 1045-53.
 - http://dx.doi.org/10.1177/0022034514552491 PMID: 25261053
- [10] Gaur S, Agnihotri R. A lzheimer's disease and chronic periodontitis: Is there an association? Geriatr Gerontol Int 2015; 15(4): 391-404. http://dx.doi.org/10.1111/ggi.12425 PMID: 25511390
- [11] Dragomir LP, Nicolae FM, Gheorghe DN, et al. The Influence of Fixed Dental Prostheses on the Expression of Inflammatory Markers and Periodontal Status—Narrative Review. Medicina (Kaunas) 2023; 59(5): 941. http://dx.doi.org/10.3390/medicina59050941 PMID: 37241173
- [12] Bartova J, Sommerova P, Lyuya-Mi Y, et al. Periodontitis as a risk factor of atherosclerosis. J Immunol Res 2014; 2014: 1-9. http://dx.doi.org/10.1155/2014/636893 PMID: 24741613
- [13] Ford PJ, Gamonal J, Seymour GJ. Immunological differences and similarities between chronic periodontitis and aggressive periodontitis. Periodontol 2000 2010; 53: 111-23. http://dx.doi.org/10.1111/j.1600-0757.2010.00349.x PMID: 20403108
- [14] Bostanci N, Belibasakis GN. Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett 2012; 333(1): 1-9. http://dx.doi.org/10.1111/j.1574-6968.2012.02579.x PMID: 22530835
- [15] Al-Sinaidi A, Preethanath RS. The effect of fixed partial dentures on periodontal status of abutment teeth. Saudi Journal for Dental Research 2014; 5(2): 104-8. http://dx.doi.org/10.1016/j.ksujds.2013.11.001
- [16] Srimaneepong V, Heboyan A, Zafar MS, et al. Fixed prosthetic restorations and periodontal health: a narrative review. J Funct Biomater 2022; 13(1): 15. http://dx.doi.org/10.3390/jfb13010015 PMID: 35225978
- [17] Avetisyan A, Markaryan M, Rokaya D, et al. Characteristics of periodontal tissues in prosthetic treatment with fixed dental prostheses. Molecules 2021; 26(5): 1331. http://dx.doi.org/10.3390/molecules26051331 PMID: 33801337
- [18] Mei F, Xie M, Huang X, et al. Porphyromonas gingivalis and its systemic impact: current status. Pathogens 2020; 9(11): 944. http://dx.doi.org/10.3390/pathogens9110944 PMID: 33202751
- [19] Lunar Silva I, Cascales E. Molecular strategies underlying Porphyromonas gingivalis virulence. J Mol Biol 2021; 433(7): 166836. http://dx.doi.org/10.1016/j.jmb.2021.166836 PMID: 33539891
- [20] Olsen I, Yilmaz Ö. Possible role of Porphyromonas gingivalis in orodigestive cancers. J Oral Microbiol 2019; 11(1): 1563410. http://dx.doi.org/10.1080/20002297.2018.1563410 PMID: 30671195
- [21] Mysak J, Podzimek S, Sommerova P, et al. Porphyromonas gingivalis: major periodontopathic pathogen overview. J Immunol Res 2014; 2014: 1-8. http://dx.doi.org/10.1155/2014/476068 PMID: 24741603
- [22] Azeez SH, Gaphor SM. Evaluation of antibacterial effect against Porphyromonas gingivalis and biocompatibility of essential oil extracted from the gum of Pistacia atlantica kurdica. BioMed Res Int 2019; 2019: 1-11. http://dx.doi.org/10.1155/2019/9195361 PMID: 31275993
- [23] Fiorillo L, Cervino G, Laino L, et al. Porphyromonas gingivalis, periodontal and systemic implications: a systematic review. Dent J

- 2019; 7(4): 114.
- http://dx.doi.org/10.3390/dj7040114 PMID: 31835888
- [24] Arjunan P, Swaminathan R, Yuan J, et al. Invasion of human retinal pigment epithelial cells by Porphyromonas gingivalis leading to vacuolar/cytosolic localization and autophagy dysfunction in vitro. Sci Rep 2020; 10(1): 7468. http://dx.doi.org/10.1038/s41598-020-64449-8 PMID: 32366945
- [25] Tikoo P, Pandit N, Changela R, Bali D, Gugnani S. Porphyromonas gingivalis: Its virulence and vaccine. Journal of the International Clinical Dental Research Organization 2015; 7(1): 51-8. http://dx.doi.org/10.4103/2231-0754.153496
- [26] Ramenzoni LL, Lehner MP, Kaufmann ME, Wiedemeier D, Attin T, Schmidlin PR. Oral diagnostic methods for the detection of periodontal disease. Diagnostics (Basel) 2021; 11(3): 571. http://dx.doi.org/10.3390/diagnostics11030571 PMID: 33810094
- [27] Kwon T, Lamster IB, Levin L. Current concepts in the management of periodontitis. Int Dent J 2021; 71(6): 462-76. http://dx.doi.org/10.1111/idj.12630 PMID: 34839889
- [28] Santos FA, Bastos EMA, Rodrigues PH, et al. Susceptibility of Prevotella intermedia/Prevotella nigrescens (and Porphyromonas gingivalis) to propolis (bee glue) and other antimicrobial agents. Anaerobe 2002; 8(1): 9-15. http://dx.doi.org/10.1006/anae.2002.0411 PMID: 16887668
- [29] Sharma A, Kolhapure SA. Evaluation of the efficacy and safety of Rumalaya gel in the management of acute and chronic inflammatory musculoskeletal disorders: An open, prospective, noncomparative, phase III clinical trial'. Medicine Update 2005; 12(10): 39-45.
- [30] Rajani M, Kanaki NS. Phytochemical standardization of herbal drugs and polyherbal formulations. Bioactive molecules and medicinal plants. Berlin, Heidelberg: Springer Berlin Heidelberg 2008; pp. 349-69. http://dx.doi.org/10.1007/978-3-540-74603-4 19
- [31] Rai M, Chikindas M, Eds. Natural antimicrobials in food safety and quality. Oxfordshire, UK: Cabi 2011; 39.
- [32] Poureslami H. The effects of plant extracts on dental plaque and caries. Contemporary Approach to Dental Caries. InTech 2012. http://dx.doi.org/10.5772/37150
- [33] Mohamed A, Shahid SMA, Alkhamaiseh SI, et al. Antibacterial activity of *Commiphora molmol* in wound infections. J Diagnostic Pathol Oncol 2017; 2: 32-6.
- [34] Omer SA, Adam SEI, Mohammed OB. Antimicrobial Activity of Commiphora myrrha Against Some Bacteria and Candida albicans Isolated from Gazelles at King Khalid Wildlife Research Centre. Res J Med Plant 2011; 5(1): 65-71. http://dx.doi.org/10.3923/rjmp.2011.65.71
- [35] Al-sieni AII. The antibacterial activity of traditionally used iSalvadora Persica/i L. (miswak) and iCommiphora Gileadensis/i (palsam) in Saudi Arabia. Afr J Tradit Complement Altern Med 2013; 11(1): 23-7.
 - http://dx.doi.org/10.4314/ajtcam.v11i1.3 PMID: 24653549
- [36] Hana DB, Kadhim HM, Jasim GA, Latif QN. Antibacterial activity of Commiphora molmol extracts on some bacterial species in Iraq. Scholars Academic Journal of Pharmacy 2016; 5: 406-12.
- [37] Motamedi H, Seyyednejad SM, Hasannejad Z, Dehghani F. A Comparative Study on the Effects of Ziziphus Spina-christi Alcoholic Extracts on Growth and Structural Integrity of Bacterial Pathogens: Ziziphus spina-christi as a native antibacterial plant. Indian J Pharm Sci 2014; 10(2): 1-10.
- [38] Alzahrani F, Al-Shaebi EM, Dkhil MA, Al-Quraishy S. In vivo antieimeria and in vitro anthelmintic activity of Ziziphus spina-christi leaf extracts. Pak J Zool 2016; 48(2)
- [39] Temerk , Salem W, Sayed W, Hassan FS. Antibacterial effect of phytochemial extracts from Ziziphus-spina christi against some pathogenic bacteria. Egypt J Bot 2017; 0(0): 595-604. http://dx.doi.org/10.21608/ejbo.2017.665.1035
- [40] Bukar AM, Kyari MZ, Gwaski PA, Gudusu M, Kuburi FS, Abadam YI. Evaluation of phytochemical and potential antibacterial activity of Ziziphus spina-christi L. against some medically important pathogenic bacteria obtained from University of

- Maiduguri Teaching Hospital, Maiduguri, Borno State â€"Nigeria. J Pharmacogn Phytochem 2015; 3(5): 98-101.
- [41] Temerk , Salem WM, Sayed WF. Antibacterial effect of phytochemical extracts from ziziphus-spina christi against some pathogenic bacteria. Egypt J Bot 2017; 0(0): 595-604. http://dx.doi.org/10.21608/ejbo.2017.665.1035
- [42] Tiwari P, Kumar B, Kaur M. Phytochemical screening and extraction: A review. Int Pharm Sci 2011; 1: 98-106.
- [43] Mekonnen Y, Dekebo A, Dagne E. Toxicity Study in Mice of Resins of Three Commiphora Species. Sinet Ethiop J Sci 2003; 26(2): 151-3.
- [44] Al-Abdalall Amira Hassan Abdullah. Antibacterial properties and phytochemical analysis of aqueous extract of oleo-gum resins of Commiphora myrrha and Commiphora molmol. Can J Pure Appl Sci 2013; 7(2): 2315-23.
- [45] Lalitha M. Hypolipidemic Activity on Ethanolic Extract of Leaves of Ziziphus encolpia (L) Mill. Gard. Int J Pharm Biol Arch 2013; 4(1): 136-41.
- [46] Stephenson Frank H. Calculations for Molecular Biology and Biotechnology: A Guide to Mathematics in the Laboratory. (2nd Edition.), Academic Press 2010.
- [47] Hall RL, Oser BL. Recent progress in the consideration of flavor ingredients under the Food Additives Amendment. 3. GRAS Substances. Food Technol 1965; 19(2, Part 2): 151-97.
- [48] Ford RA, Api AM, Letizia CS. Monographs on fragrance raw materials. Food Chem Toxicol 1992; 30(Suppl.): 1S-138S. PMID: 1526605
- [49] Saeidi M, Azadbakht M, Semnani K, Khandan M. Formulation of herbal toothpaste from chamomile and myrrh, a preliminary clinical evaluation on bleeding gum. J Mazandaran Univ Med Sci 2003; 13: 61-9.
- [50] Haffor ASA. Effect of Commiphora molmol on leukocytes proliferation in relation to histological alterations before and during healing from injury. Saudi J Biol Sci 2010; 17(2): 139-46. http://dx.doi.org/10.1016/j.sjbs.2010.02.007 PMID: 23961070
- [51] Saied AS, Gebauer J, Hammer K, Buerkert A. Ziziphus spinachristi (L.) Willd.: A multipurpose fruit tree. Genet Resour Crop Evol 2007; 55(7): 929-37. http://dx.doi.org/10.1007/s10722-007-9299-1
- [52] Park KM, You JS, Lee HY, Baek NI, Hwang JK, Kuwanon G. Kuwanon G: An antibacterial agent from the root bark of Morus alba against oral pathogens. J Ethnopharmacol 2003; 84(2-3): 181-5. http://dx.doi.org/10.1016/S0378-8741(02)00318-5 PMID: 12648813
- [53] Hossam EA, Assiri YH, Musleh MM, Taha Tarek H, El-Deeb NM, Gamal M. An exploration of the effects of *Commiphora glileadenis* on a Streptococcus mutans biofilm. Saudi J Oral Sci 2015; 2(2): 74. http://dx.doi.org/10.4103/1658-6816.160767
- [54] Al-Mutairi MH, Ali S, Aly SM, Aldebasi Y. Antibacterial activity of Sider (Ziziphus spina-christi) leaves extract against selected pathogenic bacteria. Europ J Pharm Med Res 2016; 3(5): 138-44.
- [55] Anand S, Rajan M, Venkateshbabu N, Kandaswamy D, Shravya Y, Rajeswari K. Evaluation of the antibacterial efficacy of Azadirachta indica, Commiphora myrrha, Glycyrrhiza glabra against Enterococcus faecalis using real time PCR. Open Dent J 2016; 10(1): 160-5. http://dx.doi.org/10.2174/1874210601610010160 PMID:
- 27386000
 [56] Qanbar FH. The antimicrobial effect of aqueous and alcoholic extracts of eucalyptus leaves on oral *Mutans streptococci*, Lactobacilli and *Candida albicans* (an *in vitro* study). J Bagh College Dentistry 2009; 21(4): 109-12.
- [57] Chandrasekharnath N, Mahlakshmi YV, Jayalakshmi L, Venkanna B, Uma A. Screening and isolation of bioactive factors from Commiphora Myrrha and evaluation of their antimicrobial activity. Int J Eng Res Appl 2013; 3(2): 1291-4.
- [58] Adzu B, Amos S, Wambebe C, Gamaniel K. Antinociceptive activity of Zizyphus spina-christi root bark extract. Fitoterapia 2001;

- 72(4): 344-50. http://dx.doi.org/10.1016/S0367-326X(00)00289-6 PMID: 11395256
- [59] Ahamad SR, Al-Ghadeer AR, Ali R, Qamar W, Aljarboa S. Analysis of inorganic and organic constituents of myrrh resin by GC-MS and ICP-MS: An emphasis on medicinal assets. Saudi Pharm J 2017; 25(5): 788-94. http://dx.doi.org/10.1016/j.jsps.2016.10.011 PMID: 28725152
- [60] Claeson P, Rådström P, Sköld O, Nilsson Å, Höglund S. Bactericidal effect of the sesquiterpene T-cadinol on Staphylococcus aureus. Phytother Res 1992; 6(2): 94-8. http://dx.doi.org/10.1002/ptr.2650060209
- [61] Emad MA, Amna SK, Nazlina I. Antibacterial activity of oleo-gum resins of Commiphora molmol and Boswellia papyrifera against methicillin resistant Staphylococcus aureus (MRSA). Sci Res Essays 2009; 4(4): 351-6.
- [62] Makkar HPS, Singh B, Negi SS. Relationship of rumen degradability with microbial colonization, cell wall constituents and tannin levels in some tree leaves. Anim Prod 1989; 49: 299-303.
- [63] Cowan MM. Plant products as antimicrobial agents. Clin

- Microbiol Rev 1999; 12(4): 564-82. http://dx.doi.org/10.1128/CMR.12.4.564 PMID: 10515903
- [64] Al-Qaysia SADAS. Effect of volatile oil of Myrtus communis on growth and activities of some types of pathogenic bacteria and Candida albicans. Baghdad Sci J 2008; 5(1): 8-13. http://dx.doi.org/10.21123/bsj.2008.5.1.8-13
- [65] AlMarby A, Ejike C, Nasim M, et al. Nematicidal and antimicrobial activities of methanol extracts of seventeen plants, of importance in ethnopharmacology, obtained from the Arabian Peninsula. J Intercult Ethnopharmacol 2016; 5(2): 114-21. http://dx.doi.org/10.5455/jice.20160217040157 PMID: 27104031
- [66] Abdulbary Meison, Motar Ahmed Abies, Hussein Rajaa Ali. Antibacterial effect of some medicinal plants against Staphylococcus aureus and Pseudomonas aeruginosa. Int J Res Appl Sci Biotechnol 2018; 5(4): 8-13.
- [67] Kareem SO, Akpan I, Ojo OP. Antimicrobial activities of Calotropisprocera on selected pathogenic microorganisms. Afr J Biomed Res 2008; 11: 105-10.
- [68] Al-Bayatti KK, Fitua MA, Abdalah ME. A study of antibacterial activity of Cidar (*Zizyphus spinachristi L.*) on bacterial pathogens isolated from skin infections. Asian J Pharm Sci 2011; 9(1) http://dx.doi.org/10.32947/ajps.v9i1.268