The Open Dentistry Journal

DOI: 10.2174/0118742106300869240621074459, 2024, 18, e18742106300869

SYSTEMATIC REVIEW ARTICLE

OPEN ACCESS

Zirconia Cementation: A Systematic Review of the Most Currently Used Protocols

Adriana Batista^{1,*}, Nayeli Palacios¹ and Alvarado Jiménez Omar Ricardo¹

¹Faculty of Dentistry, University of Cuenca, Cuenca, Ecuador

Abstract:

Objective: A systematic review of the existing literature was conducted and *in vitro* studies from 2019 to 2023 were analyzed on Zirconia's most resistant cementation protocol.

Methods: A systematic review of studies on the bond strength between zirconia and resin cement was carried out using different surface treatment protocols. The search was performed in two electronic databases, PubMed and Cochrane.

Results: Electronic searches yielded 1225 non-duplicated articles of which 388 were chosen after screening the titles and abstracts. After examining the full texts of these articles, a further 340 were excluded. There remained 48 studies to which the selection by inclusion and exclusion criteria was applied, eliminating 31 articles, of which 17 were finally included for the qualitative study.

Conclusion: Under the limitations of the present systematic review, it can be concluded that treating Zirconia with a combination of surface modifying agents, both mechanical and chemical, substantially improves its adhesive ability with resin cement. Aluminum oxide sandblasting, hydrofluoric acid etching, tribochemical silica coating, laser, and etching with a combination of acids in the Zircos E system are micromechanical treatments that improve the bond strength between zirconia and resin cements. MDP silane agent is an effective chemical treatment to improve the bond strength between zirconia and resin cements. Coating exclusively with a silica layer does not improve the bond strength between zirconia and resin cement.

Keywords: Zirconia, Dental cement, Surface treatment, Zirconia adhesive, Zirconia oxide, Resin cement.

© 2024 The Author(s). Published by Bentham Open.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

*Address correspondence to this author at the Faculty of Dentistry, University of Cuenca, Cuenca, Ecuador; E-mail: adriana.batista@ucuenca.edu.ec

Cite as: Batista A, Palacios N, Ricardo A. Zirconia Cementation: A Systematic Review of the Most Currently Used Protocols. Open Dent J, 2024; 18: e18742106300869. http://dx.doi.org/10.2174/0118742106300869240621074459

Received: March 11, 2024 Revised: June 11, 2024 Accepted: June 12, 2024 Published: June 26, 2024

Send Orders for Reprints to reprints@benthamscience.net

1. INTRODUCTION

All the existing scientific literature has proven and admitted the most resistant cementation protocol for cementing vitreous ceramic and metal elements. However, as far as Zirconia is concerned, even though it is a ceramic, it has specific characteristics that make it impossible to etch with acids. Therefore, it is the subject of much controversy [1]. On the other hand, it is essential to consider that the growing concern for esthetics worldwide has also penetrated the area of dentistry in recent decades [2]. It is easy to see increasingly demanding patients in the offices with the image projected by their smiles. This has repercussions on professional activity since it is increasingly necessary to be prepared and informed about the new trends in materials and techniques to solve, or at least try to respond appropriately, to this concern. For this reason, there has been increasing interest in using zirconia oxide as the material of choice for fabricating dental restorations in

recent years and in an ever-increasing manner [3]. The great advantage of not having to use prostheses with metal frameworks is that the appearance of gravish edges or tattoos on the gingival margin can be avoided, which darkens its color and alters the esthetic composition of the smile [4]. Furthermore, being metal-free, zirconia prostheses do not cause any allergy in the oral cavity, oral mucosa, or other mouth tissues [5]. All this, together with their white color, gives the prosthesis high esthetics and an optimum result in restorative treatment planning. In dentistry, yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), a ceramic composed of zirconia polycrystals in the tetragonal phase, is specifically used, adding yttrium oxide as a stabilizing agent [6]. It is common knowledge that for the long-term success of a zirconia restoration, it is necessary to have sufficient bond strength to withstand functional masticatory stresses. Therefore, restorations' performance and bonding efficiency depend highly on the cementation procedure. Since recent studies propose resins as the material of choice for bonding with Zirconia due to better bond strength and durability properties [7], it is recommended that all cementation protocols use this type of material to improve their clinical performance [8]. Acid etching and silanization have been used extensively to improve the bonding of feldspathic ceramics to composite resins [9]. However, Zirconia's physical properties and composition differ substantially from silicacontaining ceramics. Thus, the conventional acid etching procedure needs to sufficiently improve adhesion due to the poor chemical reactivity of Zirconia with acid [10]. This is due to Zirconia's polycrystalline tetragonal structure, in which no inherent glass content exists in its matrix. Therefore, Zirconia cannot be etched with acids, such as hydrofluoric or orthophosphoric acid, to form a rough surface to increase micromechanical retention [11]. Added to this problem is the absence of silica in the composition of the material, which makes it not susceptible to silanization, again preventing adequate adhesion [12]. This severe drawback of lack of etchability and silanization has caused confusion and much scientific discussion among clinicians. Since noting that zirconia restorations did not adequately resist dislodging forces, several proposals have been made for alternative protocols to improve the bond strength between resin cement, tooth structure, and zirconia restorations [13-15]. However, there is still no consensus among scientific community members on designing a suitable protocol for zirconia cementation. For this reason, the present systematic literature review has been proposed to determine the most resistant zirconia cementation protocol investigated in *in-vitro* studies.

2. MATERIALS AND METHODS

The present systematic review has followed the guidelines of the PRISMA 2020 statement (The Preferred Reporting Items for Systematic Reviews and Meta-Analyses).

2.1. Identification of Articles

Three search strategies were designed in PubMed,

Medline, and Cochrane, using a combination of MeSH descriptors (Medical Subject Headings, thesaurus of the MEDLINE repertory) and a combination of accessible terms that allowed us to compile as exhaustive a collection as possible of *in-vitro* research papers related to this topic of study. The search strategies were: MeSH terms: ZIRCONIA AND DENTAL CEMENT. DENTAL CEMENT AND ZIRCONIA OXIDE ZIRCONIA AND ADHESIVE Free search: ZIRCONIA AND SURFACE TREATMENT ZIRCONIA AND BOND STRENGTH ZIRCONIA AND ADHESIVE ZIRCONIA AND RESIN CEMENT. The filters used, both for MeSH terms and for the free search, were as follows: Time interval: the period from 2019 to 2023 (5 years) was considered. Regarding the "type of document," the search was limited to "articles," excluding other types of publications such as reviews, letters to the editor, conference abstracts, etc. Finally, English and Spanish were chosen as the "languages" of the searched texts.

2.2. Selection of Articles

The total number of records obtained was downloaded as a "Pubmed" file and then exported to the COVIDENCE and RAYYAN bibliographic managers to eliminate duplicate works effectively.

2.3. Eligibility of Articles

2.3.1. Inclusion and Exclusion Criteria for Article Eligibility

In addition, to be considered eligible at the title and abstract reading stage, studies met the following inclusion criteria: In vitro studies on the bond strength of Zirconia to resin cement. In vitro studies comparing different adhesive luting protocols between zirconia and resin cement were included. In vitro studies used accelerated aging with thermocycling of the specimens. Studies that have been published from 2019 to the date of conducting this research were included. Studies in English and Spanish were also included. After the manual selection process by criteria, all those studies unrelated to the topic were eliminated, for which the RAYYAN reference manager was used in its "Keywords" tool. A complete list of keywords was prepared for manual inclusion in the bibliographic manager since the automatic list provided by the program did not meet the review's objectives.

2.3.1.1. Piloting and Assessment of Concordance among Reviewers

Moreover, to assess whether the reviewers who carried out the screening adequately understood the inclusion and exclusion criteria, a preliminary pilot test was performed to avoid discrepancies that could jeopardize the accuracy of the selection. Cohen's Kappa reliability coefficient was used for the exercise on 300 sample articles. An external coordinator external to the research analyzed the results and recommended the necessary adjustments to improve selection accuracy. The recommended concordance value was more significant than 0.70-0.80. Finally, once the best concordance was achieved, a face-to-face conflict resolution meeting was held between researchers. Furthermore, due to the high values of Cohen's Kappa, it was not necessary to repeat the piloting. A reading of the full text followed the selection process. Next, the full text of the selected articles was read, and each researcher carried out a phase independently. Finally, all those articles that did not meet the exclusion criteria established for the study were eliminated.

2.3.2. Exclusion Criteria

• Systematic and literature reviews, case reports, pilot studies, and any other type of study design that was not *in vitro*.

• Studies that have evaluated the adhesive bond strength of zirconia crowns on implants or partial restorations.

• Studies that have not detailed the methodology for observing the results.

• Studies that have not performed thermocycling.

• Articles that did not comply with any of the components of the PICOS question established for this study. Once the final articles were selected, the results and conclusions of each research were analyzed, and the risk of bias was evaluated using the Robvis tool.

4. RESULTS

Electronic searches yielded 1225 unduplicated articles (Fig. 1), of which 388 were chosen after analysis of titles and abstracts. After examining the full texts of these

Table 1. General characteristics of the selected studies.

articles, 340 more were excluded. This left 48 studies to which the selection by inclusion and exclusion criteria was applied, eliminating 31 articles, of which 17 were finally included for the gualitative study. The general characteristics of the selected studies are presented in Table 1. All the selected studies were *in vitro* models with thermocycling. Three studies implemented hydrofluoric acid etching [16-18], two analyzed micro-sandblasting [14, 19], four analyzed silica tribochemical coating [20-23], five studies analyzed laser surface treatments [24-28], one study tested the first MDP [29], and finally, two studies analyzed a new acid etching system called Zircos-E [30, 31]. The year of publication, country of origin, type of thermal cycling, and tensile strength values in megapascals (Mpa) of both the control group and the group with the surface treatment under study are described in Table 2.

5. DISCUSSION

Zirconia is a high-resistance material that can be used in simple and plural prostheses in the anterior and posterior sectors of the oral cavity [32]. Despite being a material with good resistance characteristics, its use remains complicated since difficulties are encountered in the adhesive interface with the resinous cement that holds it to the tooth [33].

Adhesion to Zirconia is not good, so a systematic review of the literature was carried out on what materials and techniques can be used to increase the durability of the restoration in the mouth.

	Title	Innovation Glass-ceramic Spray Deposition Technology Improving the Adhesive Performance for Zirconia-based Dental Restorations.				
1	Journal	Int J Mol Sci				
	Author	Kang CM				
	Year	2022				
	Country	Swiss				
	Objectives	To evaluate the effects of different hydrofluoric acid (HF) etching times and glass ceramic spray deposition techniques on the bond strength of resin and Zirconia.				
	Conclusion	The acid etching time and glass ceramic spray deposition technique significantly affect the bond strength between zirconia and resin cement.				
	Title	Silicon-based film on the yttria-stabilized tetragonal zirconia polycrystal: Surface and shear bond strength analysis.				
	Journal	J Investig Clin Dent				
	Author	Silva AM				
2	Year	2019				
	Country	Australia				
	Objectives	Analyze the effect of the silica layer deposited on the YTZP zirconia regarding bonding strength to the resin cement.				
	Conclusion	The deposition of a layer of silica provides a lower bond strength to the resin cement than conventional surface treatments.				
	Title	Bond Strength Stability of Self-adhesive Resin Cement to Etched Vitrified Yttria-stabilized Tetragonal Zirconia Polycrystal Ceramic After Thermomechanical Cycling.				
	Journal	Oper Dent				
	Author	Maroun EV				
3	Year	2019				
	Country	USA				
	Objectives	To evaluate the influence of thermomechanical cycling on the bond strength of self-adhesive resin cement and etched and vitrified Zirconia.				
	Conclusion	Even after thermomechanical cycling, low-fusing glaze followed by hydrofluoric acid etching significantly improves the adhesive interface with the resin cement.				

(Tab	le 3) contd					
4	Title	Effects of Tribochemical Silica Coating and Alumina-Particle Air Abrasion on 3Y-TZP and 5Y-TZP: Evaluation of Surface Hardness, Roughness, Bonding, and Phase Transformation				
	Journal	J Adhes Dent				
	Author	Chen B.				
	Year	2020				
	Country	Germany				
	Objectives	Determine and compare the effects of tribochemical silica coating and alumina sandblasting on tetragonal zirconia polycrystals stabilized with 3% and 5% Ytria.				
	Conclusion	The bond strength between resin and 5Y TZP and 3Y TZP with sandblasting and tribochemical silica coating is similar without statistically significant differences.				
	Title	Influence of Surface Modification Protocol and Type of Luting Cement on Bonding of Monolithic Zirconia to Dentin Substrate				
	Journal	J Contemp Dent Practice				
	Author	Saker S				
	Year	2020				
5	Country	India				
	Objectives	This study evaluates the bond strength of two types of cement to monolithic Zirconia and dentin after various surface modifications and aging.				
	Conclusion	Selective glass infiltration etching effectively altered the surface properties by creating a solid and durable bond with the monolithic Zirconia.				
	Title	Effect of Different Surface Treatments and Pressure Conditions on Shear Bond Strength of Zirconia Ceramic to Composite Resin.				
	Journal	Front Dent				
	Author	Kabiri S				
6	Year	2021				
Ŭ	Country	Iran				
	Objectives	To evaluate the shear strength (SBS) of Zirconia ceramic to composite resin with various surface treatments after pressure changes				
	Conclusion	Sandblasting and tribochemical preparation improve bonding compared to Er: YAG laser irradiation. The different pressures had no significant effect.				
	Title	Surface wettability and nano roughness at different grit blasting operational pressures and their effects on resin cement to zirconia adhesion.				
	Journal	Dent Mater				
	Author	Khan AA				
-	Year	2019				
'	Country	Japan				
	Objectives	Investigate the effects of air pressure of tribochemical silica coating system on surface roughness, wetting, and adhesion of Zirconia to resin cement				
	Conclusion	Sandblasting at different air pressures qualitatively and quantitatively improves the bond between zirconia and resin cement. 180Kpa was the most suitable compared to 280Kpa				
	Title	Influence of Particle and Air-Abrasion Moment on Y-TZP Surface Characterization and Bond Strength.				
	Journal	J Prosthodont				
	Author	Martins SB				
0	Year	2019				
0	Country	USA				
	Objectives	To evaluate the influence of the sandblasting moment on the surface characterization and shear strength (SBS) of a Y-TZP ceramic with resin cement.				
	Conclusion	Air abrasion with certain particles before and after zirconia sintering provides bond strengths similar to post-sintering sandblasting.				
	Title	Effect of the nanofilm-coated zirconia ceramic on resin cement bond strength.				
	Journal	J Dent Res Dent Clin Dent Prospects				
9	Author	De Figueiredo VMG				
	Year	2022				
	Country	Iran				
	Objectives	To evaluate the effect of silica and fluorine nanofilms on zirconia ceramic for bond strength with resin cement.				
	Conclusion	Silica and fluorine nanofilms deposited by PECVD did not promote bonding between zirconia and resin cement.				
10	Title	The Shear Bond Strength of Resin-Based Luting Cement to Zirconia Ceramics after Different Surface Treatments.				
	Journal	Materials				
	Author	Sokolowski G				
	Year	2023				
	Country	Swiss				
	Objectives	Determine the effect of a new etching technique (Zircos-E) on the bond strength of Zirconia				
	Conclusion	The use of the Zircos-F system positively influences the shear resistance between zirconia and resin coment				
	~ JHUIUJIUII	and all of the Largest L by bloth positivery minuterious the bioth residented between Lirobin und resin coments.				

File The effects of salare to 10 methony/wideo/d dilly/crown phosphale/ MDP) ratio is a primer on the bonding performance of silica-based salare based salare ba	(Tab	le 3) contd					
Image: sec: sec: sec: sec: sec: sec: sec: se		Title	The effects of silane to 10-methacryloyloxydecyl dihydrogen phosphate (MDP) ratio in a primer on the bonding performance of silica-based and Zirconia ceramics.				
Interm Iskn Iskn Iskn I Year 2020 I Year 2020 I Sentior Island I Sentisland Isla		Journal	J Mech Behav Biomed Mater				
11 Version 2020 County Holand County Holand County Holand County Holand County Holand duration based accounte. County Holand duration based accounte. Formation Locatery Durat Pravison with Aluminum Oxide or Glass Beads on Zirconia Bond Strength of Cenent. Juncal Locatery Durat Pravison Version Holand Strength of Strength of Cenent. Juncal Locatery Durat Pravison Version Strength of Strength of Strength of Cenent. Juncal Locatery Durat Pravison Version Particle Version Particle Operation Indian Strength of Strength of Strength of Strength of Circonia Operation Arabrasion with Blass Deads resulted in significantly lower hond strength of resin cenent to all three types of Zirconia to composite resin cenent. Juncal Concluson Narabrasion with Blass Deads resulted in Strength of		Author	Koko M				
Found Holland Objective Isochasta the effects of different silane concentrations at 1% by weight of 10-methacryloptoydecyl dihydrogen phosphate (MDP) on the bording to 81bc- and zirconia based ceramics. Conclusion Increasing the percentage of VMPE pain impresence of MDP can improve the durability of the risks censent-ceramic bond. James J Conclusion Motion 1 Conclusion Motion 1 Conclusion Variation Motion 1 Conclusion Conclusion Motion 1 Conclusion Conclusion Motion 1 Conclusion Objectives To evaluate the effects of air abrasion with aluminum oxide or glass beads on three types of Zirconia. Conclusion Air abrasion with plass beads resulted in significantly lower bond strength of resin censent to all three types of Zirconia to composite resin of the abrasion on the bonding properties of Zirconia to composite resin of the abrasion on the bonding or properties of Zirconia to composite resin of the abrasion on the properties of Zirconia to composite resin. Jum The Conclusion Feffect direction advance and particle abrasion to improve the bonding of zirconia restructions to resin. Jum Line oral investig Jum Sirce direction advance and exclusing with an acid solution for Zirconia on the hond strength between zirconia and resin censent. Ob	11	Year	2020				
Dispertives To evaluate the effects of afferent silanc concentrations at 1% by weight of 10-methacryloyloxydexyl dhydrogen phosphate (MDP) on the bonding to silac- and increasing the percentage of y-MPTS up to 5% in the presence of MDP can improve the durability of the resin cement-ceramic bond. Title Assessing the Effects of afferent silanc concentrations at 1% by weight of 10-methacryloyloxydexyl dhydrogen phosphate (MDP) on the bonding for the resin cement-ceramic bond. Year 2020 Conclusion Nathor K Objectives To evaluate the effects of air abrasion with Aluminum Oxide or Glass Beads on three types of Zirconia. Conclusion Mathor K Conclusion Mathor K Conclusion Mathor K Diffectives To evaluate the effects of air abrasion with aluminum oxide or glass beads on three types of Zirconia. Mathor Linameanan K Java Diffectives intraface modifications combined with universal adhesives: the impact on the bonding properties of Zirconia to composite resin Guardia Conclusion Pathor Linameanan K 2019 Conclusion Pathor Linameanan K Java 2019 Conclusion Conclusion Pathor is a abustituit for suspended particle abrasion to improve the bond strong h backwen		Country	Holland				
Image: section in the presence of MDP can improve the durability of the resin canani- ceramic boad. Image: section in the presence of MDP can improve the durability of the resin canani- ceramic boad. Image: section in the presence of MDP can improve the durability of the resin canani- ceramic boad. Image: section in the presence of MDP can improve the durability of the resin canani- ceramic boad. Image: section in the presence of MDP can improve the durability of the resin canani- ceramic boad. Image: section in the presence of MDP can improve the durability of the resin canani ceramic boad. Image: section in the presence of MDP can improve the durability of the resin canani ceramic boad. Image: section in the presence of MDP can improve the durability of the resin canani ceramic boad. Image: section in the improve the durability of the resin cenani ceramic boad. Image: section in the improve the durability of the resin cenani. Image: section in the improve the boading properties of Zirconia. Image: section in the improve the boading represence of Zirconia. Image: section in the improve the boading represence of Zirconia. Image: section in the improve the boading represence of Zirconia. Image: section in the improve the boad section in the improve the boading represence of Zirconia. Image: section in the improve the boad section in the improve the boad section in the improve the boad section in the improve teconia. Image: s		Objectives	To evaluate the effects of different silane concentrations at 1% by weight of 10-methacryloyloxydecyl dihydrogen phosphate (MDP) on the bonding to silica- and zirconia-based ceramics.				
Title Assessing the Effects of Air Abrasion with Aluminum Oxide or Class Beads on Zirconia Bond Strength of Cement. Journal J Contemp Dent Practice Autor Mehari K 21 Year 2020 Country India Objectives To evaluate the effects of air abrasion with aluminum oxide or glass beads on three types of Zirconia. Opticution Mit abrasion with aluminum oxide. Interest system outfloatures combined with universal adhesives: the impact on the bonding properties of Zirconia to composite resin ement. Juncal Clin Oral lavestig Interest system outfloatures combined with universal adhesives: the impact on the bonding properties of Zirconia to composite resin ement. Journal Clin Oral lavestig Streams Streams Autor Lumkemann K Streams Jeans Total associate the impact of plasma and UA troatment on the bonding properties of Zirconia. Construst Generation Generation Journal J Provisite Demi Streams Streams Journal J Provisite Demi Concurston Streams Streams Journal J Provisite Demi Concurston Streams Streams Journal J Provisite Demi Concurston Streams Concurston Streams Author Streams </th <th></th> <th>Conclusion</th> <th>Increasing the percentage of γ-MPTS up to 5% in the presence of MDP can improve the durability of the resin cement-ceramic bond.</th>		Conclusion	Increasing the percentage of γ -MPTS up to 5% in the presence of MDP can improve the durability of the resin cement-ceramic bond.				
Jernal J Contemp Dent Practice Jama J Contemp Dent Practice County India Objectives India Objectives India Contubo Air Abrasion with data brasion with aluminum oxide or glass beads on three types of Zirconia. Contubo Air Abrasion with datas beads resulted in significantly lower bond strength of resin centent to all three types of Zirconia to composite resin centent. Concurso Air Abrasion with datas beads resulted in significantly lower bond strength of resin centent to all three types of Zirconia to composite resin centent. Vara 2019 Concurson Concurson Resma treatment is not a substitute for suspended particle abrasion to improve the bonding of zirconia restorations to resin. Title Teffer of arzonia threating with an acid solution of Zirconia on threating and resin centent. Concurson Restoration advitation advitation of Zirconia (Zirconia advitantly improve the bonding orizonia arestorations to resin. Title Teffer of arzonia centering with an acid solution for Zirconia and resin centent. Torevaluate theeffect of acid tething with an acid solution for Zir		Title	Assessing the Effects of Air Abrasion with Aluminum Oxide or Glass Beads on Zirconia Bond Strength of Cement				
Nation Methani K Vera 2020 County India Objectives To evaluate the effects of air abrasion with aluminum oxide or glass beads on three types of Zirconia. Author Milesise boads resulted in significantly lower bond strong the result on all three types of Zirconia than air abrasion with aluminum oxide. The Objectives To evaluate the effects of air abrasion with universal adhesives: the inpact on the bonding properties of Zirconia to composite resin center. Journal Clin Oral Investig Clin Oral Investig Author Lumkoman K Clin Oral Investig Objectives To analyze the impact of plasma and UA treatment on the bonding properties of Zirconia Conclusion Objectives To analyze the impact of plasma and UA treatment on the bonding properties of Zirconia Conclusion Jummal Pirosthet Denti Author Sodid-Zade R Canclusion Year 2021 Country USA Objectives To evaluate the effect of acid etching with an acid solution for Zirconia and resin cement. Journal Distribut the uniter state activation (Zircon-E) does not significantly improve the bond between zirconia and resin cement. Conclusion Objectives To		Iournal	I Contemn Dent Practice				
Var 2020 Var Conclusion Ar abrasion with diass boads resulted in significantly lower bond strength of resin cement to all three types of Zirconia than air abrasion Junt Conclusion Junt Different surface modifications combined with universal adbesives: the impact on the bonding properties of Zirconia to composite resin Conclusion Filte Olifectters Conclusion Filtes Gineman K Objectters To analyze the impact of plasma and UA treatment on the bonding properties of Zirconia restorations to resin. Junt Filte Filte Filte Conclusion Plasma treatment is not a substitut for suspended particle abrasioa to improve the bonding or zirconia restorations to resin. Junt Effect of rarconia etching solution on the share bond strength between zirconia and resin cement. Conclusion Stado Zaden R Year 2021 Conclusion Conclusion Junt Stado Staden R <th></th> <th>Author</th> <th>Mehari K</th>		Author	Mehari K				
Total Control County Indual Disciplenter County Indual The abrasion County Indual The abrasion with glass beads resulted in significantly lower bond strength of resin cement to all three types of Zirconia to composite resin cement. Journal Clin Oral Investig Jurnal Clin Oral Investig Jurnal Clin Oral Investig Concurso Pissin treatment work Objectives To analyze the impact of plasma and UA treatment on the bonding properties of Zirconia restorations to resin. Concurso Pissin treatment is not a substitute for suspended particle abrasion to improve the bonding of zirconia restorations to resin. Concurso Sedid Zadeh R 4 Year 2021 County USA Objectives To evaluate the effect of acid etching with an acid solution for Zirconia and resin cement. Jurnal President Deat Autor UBrashort-pulse laser as a surface treatment for bonding hetween zirconia and resin cement. Objectives To evaluate the effect of altrashort pulse laser as a surface treatment that improves adhesive hond between zirconia and resin cement. Jurnal Dent Meter		Vear					
Number Number Objectives To evaluate the effects of air abrasion with aluminum oxide or glass beads on three types of Zirconia. Objectives To evaluate the effects of air abrasion with aluminum oxide. Particle Different surface modifications combined with universal adhesives: the impact on the bonding properties of Zirconia to composite resin cement. Particle Different surface modifications combined with universal adhesives: the impact on the bonding properties of Zirconia to composite resin cement. Vertex 2019 Conclusion Please intreatment is not a substitute for suspended particle abrasion to improve the bonding of zirconia restorations to resin. Pittle Effect of zirconia etching solution on the shear bond strength between zirconia and resin cement. Journty USA Quarty USA Quart	12	Country	2020				
Under the process of the second matrices of matrices of matrices of matrices of gass Decards of univer types of Zirconia than air abrasion with aluminum oxide. Genetics Conclusion Rain abrasion with aluminum oxide. Title Different surface modifications combined with universal adhesives: the impact on the bonding properties of Zirconia to composite resin cement. Journal Clin Oral Investig Genetics Conclusion Plasma treatment is not a substitute for suspended particle abrasion to improve the bonding of zirconia restorations to resin. Gonduise Effect of zirconia etching solution on the shear bond strength between zirconia and resin cement. Fund Prosthet Dent Author Solid Zadoh R Conclusion Raine treatment is not a substitute for suspended particle abrasion to improve the bonding of zirconia restorations to resin. Conclusion Conclusion of Acid etching with an acid solution for Zirconia on the bond strength between zirconia and resin cement. Objectives To evaluate the effect of acid etching with an acid solution for Zirconia on the bond strength between zirconia and resin cement. Journal Dent Meas Dent Meas Title Untrashort pulse laser as a surface treatment for bonding between zirconia and resin cement. Journal Dent Meas Dent Meas		Objectives	intua				
Conclusion Arr and solution fulgies basis residued in significantly lower band screnging or resin cement to an intere types of zirconia than arr adrason with Animatium oxide. Full Different surface modifications combined with universal adhesives: the impact on the bonding properties of Zirconia to composite resin cement. Full Different surface modifications combined with universal adhesives: the impact on the bonding properties of Zirconia to composite resin cement. Full Effect of zirconia (Toronia) Effect of zirconia (Toronia) Output Germany Output Cement. Effect of zirconia (Zirconia eching solution on the shear bond strength between zirconia and resin cement. Full Effect of zirconia eching solution on the shear bond strength between zirconia and resin cement. Full Stadd Zadeh R Parton Quart Stadd Zadeh R Quart Quart Vert Country USA Objectives To evaluate the effect of acid etching with an acid solution for Zirconia on the bond strength between zirconia and resin cement. Journal Journal Dent Mater Journal Dent Mater Strength add transmotion with an acid solution for Zirconia on the bond strength between zirconia and resin cement. Journal Dent Mater		Objectives	To evaluate the effects of an abilitation with automation of a second se				
Title Different surface modifications combined with universal addresives: the impact on the bonding properties of Zirconia to composite resin connect. Juma Clin Oral Investig Jumber Lamkemann K Vera 2019 Conclusion Remary Objectives To analyze the impact of plasma and UA treatment on the bonding properties of Zirconia. Objective To analyze the impact of plasma and UA treatment on the bonding properties of Zirconia restorations to resin. Juma Prest of zirconia etching solution on the shear bond strength between zirconia and resin cement. Juma Prest of zirconia etching solution on the shear bond strength between zirconia and resin cement. Vera 2021 Country USA Objectives To evaluate the effect of acid etching with an acid solution for Zirconia on the bond strength between zirconia and resin cement. Country USA Juma Dent Mater Author Author Auto Auta and autor Jup Conclusion Jup Dent face of any with an acid solution for Zirconia on the shond strength between zirconia and resin cement. Jup Conclusion Dent stare </th <th></th> <th>Conclusion</th> <th>Air abrasion with glass beads resulted in significantly lower bond strength of resin cement to all three types of Zirconia than air abrasion with aluminum oxide.</th>		Conclusion	Air abrasion with glass beads resulted in significantly lower bond strength of resin cement to all three types of Zirconia than air abrasion with aluminum oxide.				
Jermal Clin Oral Investig Nature Lumkeman K Vector Lumkeman K Vector 2019 Output Germany Objectives To analyze the impact of plasma and UA treatment on the bonding properties of Zirconia. Objectives To analyze the impact of plasma and UA treatment on the bonding properties of Zirconia. Objectives To analyze the impact of plasma and UA treatment on the bonding properties of Zirconia. Jurnal JProsthel Dent Jurnal Objectives Sadid-Zadeh R Vector Sadid-Zadeh R Vector Outpact Sadid-Zadeh R Vector Outpact Sadid-Zadeh R Vector Sadid-Zadeh R Sadid-Zadeh R Vector Outpact Sadid-Zadeh R Vector Not anal solution for Zirconia (Zircos:E) does not significantly improve the bond between zirconia and resin cement. Vector Not anal Meter Autom Autom Not Right Autom Journal Destricts Restor different laser treatment for bonding between zirconia and resin cement. Objectives <		Title	Different surface modifications combined with universal adhesives: the impact on the bonding properties of Zirconia to composite resin cement.				
Image: Provide and the standard st		Journal	Clin Oral Investig				
Image Pierror Oligence Construction Image Generation Generation Generation Image Field of airconia etching solution on the shear bond strength between zirconia and resin cement. Journal	10	Author	Lumkemann K				
Fermion Generation Generation Particle Totalization Totalization Particle Totalization Totalization Particle Static discontration on the share bond strength between zirconia and resin cement. Particle Static discontration on the share bond strength between zirconia and resin cement. Particle Static discontration on the share bond strength between zirconia and resin cement. Particle Static discontration on the share bond strength between zirconia and resin cement. Particle To evaluate the effect of acid etching with an acid solution for Zirconia on the shore bond strength between zirconia and resin cement. Particle To evaluate the effect of acid etching with an acid solution for Zirconia on the shore bond strength between zirconia and resin cement. Particle To evaluate the effect of acid etching with an acid solution for Zirconia on the shore bond strength between zirconia and resin cement. Particle To evaluate the effect of acid etching with an acid solution for Zirconia on the significantly improve the bond between zirconia and resin cement. Particle To evaluate the effect of acid etching with an acid solution for Zirconia on the significantly improve the bond between zirconia and resin cement. Particle Total distributes as a surface treatment on tho and treatment on the since distributes and thec	13	Year	2019				
Note Number of a solve the impact of plasma and UA treatment on the bonding properties of Zirconia. Vectors Plasma treatment is not a substitute for suspended particle abrasion to improve the bonding of zirconia restorations to resin. Fitte Effect of zirconia etching solution on the shear bond strength between zirconia and resin cement. Journal I Prostbet Dent Autor Sadid-Zadeh R Vector 2021 Concurva USA Vector Ovaluate the effect of acid etching with an acid solution for Zirconia on the bond strength between zirconia and resin cement. Concurva Add stabent-pulse laser as a surface treatment for bonding between zirconia and resin cement. Concurva Add stabent-pulse laser as a surface treatment for bonding between zirconia and resin cement. Mutor Abarban Abarban Autor Abarban Abarban Mutor Interactive streatments on the shear bond strength between zirconia and resin cement. Description Interactive streatment solve s		Country	Germany				
Image: Non-Wight Parameter Part Parameter		Objectives	To analyze the impact of plasma and UA treatment on the bonding properties of Zirconia.				
Title Effect of zirconia etching solution on the shear bond strength between zirconia and resin cement. Journal J Prosthet Dent Author Sadid-Zadeh R Vear 2021 Country USA Objectives To evaluate the effect of acid etching with an acid solution for Zirconia on the bond strength between zirconia and resin cement. Conclusion Acid etching with an acid solution for Zirconia (Zircos-E) does not significantly improve the bond between zirconia and resin cement. Conclusion Acid etching with an acid solution for Zirconia (Zircos-E) does not significantly improve the bond between zirconia and resin cement. Title Ultrashort-pulse laser as a surface treatment for bonding between zirconia and resin cement. Author Abu Ruja M Team 2019 Conclusion Ultrashort-pulse laser increases bond strength without compromising restoration strength. Conclusion Ultrashort pulse laser increases bond strength without compromising restoration strength. Title Effect of different laser treatments on the shear bond strength of Zirconia ceramic to resin cement. Conclusion Ultrashort pulse laser increases bond values of the Zirconia to the resin cement compared to the untreated surface. The Er-YAG laser was the most effective, along with sandblasting. <		Conclusion	Plasma treatment is not a substitute for suspended particle abrasion to improve the bonding of zirconia restorations to resin.				
journal JProsthet Dent Author Sadid-Zadeh R Year 2021 Country USA Objectives To evaluate the effect of acid etching with an acid solution for Zirconia on the bond strength between zirconia and resin cement. Conclusion Acid etching with an acid solution for Zirconia (Zircos-E) does not significantly improve the bond between zirconia and resin cement. Journal Dent Mater Author Abu Ruja M 15 Year 2019 Country Conclusion Ultrashort-pulse laser as a surface treatment for bonding between zirconia and resin cement. Journal Dent Mater Author Abu Ruja M 15 Year 2019 Country Country England Objectives To evaluate the effect of ultrashort pulse laser as a surface treatment that improves adhesive bonding to Y-TZP. Conclusion Ultrashort pulse laser increases bond strength of Zirconia ceramic to resin cement. Journal Dent Res J Author Hatami M Year 2021 Country Iran		Title	Effect of zirconia etching solution on the shear bond strength between zirconia and resin cement.				
Author Sadid-Zadeh R I4 Year 2021 Country USA Objectives To evaluate the effect of acid etching with an acid solution for Zirconia on the bond strength between zirconia and resin cement. Conclusion Acid etching with an acid solution for Zirconia (Zircos-E) does not significantly improve the bond between zirconia and resin cement. Journal Dent Mater Author Abu Ruja M 15 Year 2019 Conclusion Utrashort-pulse laser increases bond strength without compromising restoration strength. Title Utrashort pulse laser increases bond strength without compromising restoration strength. To evaluate the effect of ultrashort pulse laser increases bond strength without compromising restoration strength. Title Effect of different laser treatments on the shear bond strength of Zirconia ceramic to resin cement. Journal Dent Res J Author Hatami M Year 2021 Conclusion The purpose of this study is to evaluate and compare the effect of 3 types of lasers on the bond strength of Zirconia to resin cement. Objectives The purpose of this study is not olauser of the Zirconia to the resin cement compared to the untreated surface. The Er-YAG laser was the mo		Journal	J Prosthet Dent				
14 Year 2021 Country USA Objectives To evaluate the effect of acid etching with an acid solution for Zirconia on the bond strength between zirconia and resin cement. Conclusion Acid etching with an acid solution for Zirconia (Zircos-E) does not significantly improve the bond between zirconia and resin cement. Journal Dent Mater Author Abu Ruja M 15 Year 2019 Country England Objectives To evaluate the effect of ultrashort pulse laser as a surface treatment that improves adhesive bonding to Y-TZP. Counclusion Ultrashort pulse laser increases bond strength without compromising restoration strength. Title Effect of different laser treatments on the shear bond strength of Zirconia ceramic to resin cement. Journal Dent Res J Author Hatami M Year 2021 Country Iran Objectives The Laser increases the adhesive bond values of the Zirconia to the resin cement compared to the untreated surface. The Er-YAG laser was the most effective, along with sandblasting. Title Fulse Nothermal Plasma Treatment can eliminate sandblasting procedure For Zirconia-Resin cement bonding		Author	Sadid-Zadeh R				
Country USA Objectives To evaluate the effect of acid etching with an acid solution for Zirconia on the bond strength between zirconia and resin cement. Title Ultrashort-pulse laser as a surface treatment for bonding between zirconia and resin cement. Journal Dent Mater Author Abu Ruja M Term Dent Mater Author Abu Ruja M To evaluate the effect of ultrashort pulse laser as a surface treatment that improves adhesive bonding to Y-TZP. Conclusion Ultrashort pulse laser increases bond strength without compromising restoration strength. To evaluate the effect of ultrashort pulse laser as a surface treatment that improves adhesive bonding to Y-TZP. Conclusion Ultrashort pulse laser increases bond strength without compromising restoration strength. Title Effect of different laser treatments on the shear bond strength of Zirconia creamic to resin cement. Journal Dent Res J Author Hatami M Year 2021 Country The Laser increases the adhesive bond values of the Zirconia to the resin cement compared to the untreated surface. The Er-YAG laser was the most effective, along with sandblasting. Journal Int J Prostodont Author Merev A	14	Year	2021				
Interform Towaluate the effect of acid etching with an acid solution for Zirconia on the bond strength between zirconia and resin cement. Objectives To evaluate the effect of acid etching with an acid solution for Zirconia (Zircos-E) does not significantly improve the bond between zirconia and resin cement. Journal Acid etching with an acid solution for Zirconia (Zircos-E) does not significantly improve the bond between zirconia and resin cement. Journal Dent Mater Journal Dent Mater Author Abu Ruja M 15 Year 2019 Country England Objectives Objectives To evaluate the effect of ultrashort pulse laser as a surface treatment that improves adhesive bonding to Y-TZP. Conclusion Ultrashort pulse laser increases bond strength without compromising restoration strength. Journal Dent Res J Author Hatami M Year 2021 Country In purpose of this study is to evaluate and compare the effect of 3 types of lasers on the bond strength of Zirconia to resin cement. Objectives The Laser increases the adhesive bond values of the Zirconia to the resin cement compared to the untreated surface. The Er-YAG laser was the most effective, along with sandblasting. Year 2020		Country	USA				
Conclusion Acid etching with an acid solution for Zirconia (Zircos-E) does not significantly improve the bond between zirconia and resin cement. Title Ultrashort-pulse laser as a surface treatment for bonding between zirconia and resin cement. Journal Dent Mater Author Abu Ruja M 15 Year 2019 Conclusion Ultrashort pulse laser increases bond strength without compromising restoration strength. Objectives To evaluate the effect of ultrashort pulse laser increases bond strength without compromising restoration strength. Title Effect of different laser treatments on the shear bond strength of Zirconia ceramic to resin cement. Journal Dent Res J Author Hatami M Year 2021 Conclusion Tirconia core of this study is to evaluate and compare the effect of 3 types of lasers on the bond strength of Zirconia to resin cement. Objectives The Laser increases the adhesive bond values of the Zirconia to the resin cement bonding Journal Int J Prosthodont Tarte Warto Year 2020 Conclusion Int J Prosthodont Year 2020 Country Titiye </th <th></th> <th>Objectives</th> <th>To evaluate the effect of acid etching with an acid solution for Zirconia on the bond strength between zirconia and resin cement.</th>		Objectives	To evaluate the effect of acid etching with an acid solution for Zirconia on the bond strength between zirconia and resin cement.				
Title Ultrashort-pulse laser as a surface treatment for bonding between zirconia and resin cement. Journal Dent Mater Author Abu Ruja M Year 2019 Country England Objectives To evaluate the effect of ultrashort pulse laser as a surface treatment that improves adhesive bonding to Y-TZP. Conclusion Ultrashort pulse laser increases bond strength without compromising restoration strength. Title Effect of different laser treatments on the shear bond strength of Zirconia ceramic to resin cement. Journal Dent Res J Author Hatami M Year 2021 Contuston The purpose of this study is to evaluate and compare the effect of 3 types of lasers on the bond strength of Zirconia to resin cement. Objectives The Laser increases the adhesive bond values of the Zirconia to the resin cement compared to the untreated surface. The Er-YAG laser was the most effective, along with sandblasting. Itel Nonthermal Plasma Treatment can eliminate sandblasting procedure For Zirconia-Resin cement bonding Journal Int J Prosthodont Author Merve A Quetty Treat aser increases the adhesive bond spheric plasma (NTAP) treatment, alone or in combination <		Conclusion	Acid etching with an acid solution for Zirconia (Zircos-E) does not significantly improve the bond between zirconia and resin cement.				
Internal Description and the effect of control control of control of control control of control control		Title	Ultrachort-nulse laser as a surface treatment for bonding between zirconia and resin cement				
Mathon Aburnation Autor Aburgia M Fear 2019 Country England Objectives To evaluate the effect of ultrashort pulse laser as a surface treatment that improves adhesive bonding to Y-TZP. Conclusion Ultrashort pulse laser increases bond strength without compromising restoration strength. Journal Effect of different laser treatments on the shear bond strength of Zirconia ceramic to resin cement. Journal Dent Res.J Author Hatami M Year 2021 Country Tran Objectives The purpose of this study is to evaluate and compare the effect of 3 types of lasers on the bond strength of Zirconia to resin cement. Conclusion The Laser increases the adhesive bond values of the Zirconia to the resin cement compared to the untreated surface. The Er-YAG laser was the most effective, along with sandblasting. Title Nonthermal Plasma Treatment can eliminate sandblasting procedure For Zirconia-Resin cement bonding Journal It J Prosthodont Author Merve A Year 2020 Conclusion The valuate the effects of nonthermal atmospheric plasma (NTAP) treatment, alone or in combination with sandblasting and primer application in bondi		Iournal	Dent Mater				
Nature Note ridge M Year 2019 Courty England Objectives To evaluate the effect of ultrashort pulse laser as a surface treatment that improves adhesive bonding to Y-TZP. Conclusion Ultrashort pulse laser increases bond strength without compromising restoration strength. Fittle Effect of different laser treatments on the shear bond strength of Zirconia ceramic to resin cement. Journal Dent Res J Author Hatami M Year 2021 Country Iran Objectives The purpose of this study is to evaluate and compare the effect of 3 types of lasers on the bond strength of Zirconia to resin cement. Objectives The purpose of this study is to evaluate and compare the effect of 3 types of lasers on the bond strength of Zirconia to resin cement. Objectives The purpose of this study is to evaluate and compare the effect of 3 types of lasers on the bond strength of Zirconia to resin cement. Objectives The Laser increases the adhesive bond values of the Zirconia to the resin cement compared to the untreated surface. The Er-YAG laser was the most effective, along with sandblasting. Journal Int J Prosthodont Author Merve A Year 2020 To e		Author	Join Multi				
Image Part Part Part Part Part Part Part Part	15	Voor	2010				
Count y England Objectives To evaluate the effect of ultrashort pulse laser as a surface treatment that improves adhesive bonding to Y-TZP. Conclusion Ultrashort pulse laser increases bond strength without compromising restoration strength. Fife Effect of different laser treatments on the shear bond strength of Zirconia ceramic to resin cement. Jumal Dent Res J Author Hatami M Objectives The purpose of this study is to evaluate and compare the effect of 3 types of lasers on the bond strength of Zirconia to resin cement. Objectives The Laser increases the adhesive bond values of the Zirconia to the resin cement compared to the untreated surface. The Er-YAG laser was the most effective, along with sandblasting. Fuel Nothermal Plasma Treatment can eliminate sandblasting procedure For Zirconia-Resin cement bonding Jumal Int J Prosthodont Author Merve A Que Oil Jumal Int J Prosthodont Internet the effects of nonthermal atmospheric plasma (NTAP) treatment, alone or in combination with sandblasting and primer application in bonding zirconia ceramics to resinous cement. Objectives To evaluate the effects of nonthermal atmospheric plasma (NTAP) treatment, alone or in combination with sandblasting and primer application in bonding zirconia ceramics to resinous cement. <th>13</th> <th>Country</th> <th>2017 England</th>	13	Country	2017 England				
bill For evaluate the effect of uttrashort pulse laser as a surface treatment that improves adhesive bolding to 1-12P. Conclusion Ultrashort pulse laser increases bond strength without compromising restoration strength. File Effect of different laser treatments on the shear bond strength of Zirconia ceramic to resin cement. Journal Dent Res J Author Hatami M Vera 2021 Country Tran Dipertives The purpose of this study is to evaluate and compare the effect of 3 types of lasers on the bond strength of Zirconia to resin cement. Objectives The Laser increases the adhesive bond values of the Zirconia to the resin cement compared to the untreated surface. The Er-YAG laser was the most effective, along with sandblasting. Journal Int J Prosthodont Author Merve A Year 2020 Country Tirkje Objectives To evaluate the effects of nonthermal atmospheric plasma (NTAP) treatment, alone or in combination with sandblasting and primer application in bonding zirconia ceramics to resinous cement. Objectives To evaluate the effects of nonthermal atmospheric plasma (NTAP) treatment, alone or in combination of zirconia ceramics. Applying NTAP before primer improves adhesion.		Objectives	England				
Conclusion Outsigned Totashoff pulse laser increases bond strength without compromising restoration strength. File Effect of different laser treatments on the shear bond strength of Zirconia ceramic to resin cement. Journal Dent Res J Author Hatami M Vear 2021 Country Tran Objectives The purpose of this study is to evaluate and compare the effect of 3 types of lasers on the bond strength of Zirconia to resin cement. conclusion The Laser increases the adhesive bond values of the Zirconia to the resin cement compared to the untreated surface. The Er-YAG laser was the most effective, along with sandblasting. Journal Int J Prosthodont Author Merve A Year 2020 Country Tirkiye Objectives To evaluate the effects of nonthermal atmospheric plasma (NTAP) treatment, alone or in combination with sandblasting and primer application in bonding zirconia ceramics to resinous cement. objectives To evaluate the effects of nonthermal atmospheric plasma (NTAP) treatment, alone or in combination di zirconia ceramics. Applying NTAP before primer improves adhesion. NTAP application can be an alternative treatment method to sandblasting for the adhesive cementation of zirconia ceramics. Applying NTAP		Objectives	To evaluate the effect of utrashort puise laser as a surface treatment that improves antesive bolding to 1-12P.				
Inde Effect of different laser treatments on the snear bond strength of Zirconia ceramic to resin cement. Journal Dent Res J Author Hatami M Year 2021 Country Iran Objectives The purpose of this study is to evaluate and compare the effect of 3 types of lasers on the bond strength of Zirconia to resin cement. Conclusion The Laser increases the adhesive bond values of the Zirconia to the resin cement compared to the untreated surface. The Er-YAG laser was the most effective, along with sandblasting. Title Nonthermal Plasma Treatment can eliminate sandblasting procedure For Zirconia-Resin cement bonding Author Merve A Quert Country Tirkiye Objectives To evaluate the effects of nonthermal atmospheric plasma (NTAP) treatment, alone or in combination Objectives To evaluate the effects of nonthermal atmospheric plasma (NTAP) treatment, alone or in combination Objectives NTAP application can be an alternative treatment method to sandblasting for the adhesive cementation of zirconia ceramics. Applying NTAP		Conclusion	Ultrashort pulse laser increases bond strength without compromising restoration strength.				
Journal Journal Journal Journal Journal Journal Journal Journal Hatami M 4ubor Hatami M 2021			Enect of unferent laser treatments on the snear bond strength of Zirconia Ceramic to resin cement.				
Autor Hatam M Year 2021 Year 2021 Year The Autor Iname Objective The purpose of this study is to evaluate and compare the effect of 3 types of lasers on the bond strength of Zirconia to resin cement. Objective The Laser increases the adhesive bond values of the Zirconia to the resin cement compared to the untreated surface. The Er-YAG laser was the adhesive fifective, along with sandblasting. File Nonthermal Plasma Treatment can eliminate sandblasting procedure For Zirconia-Resin cement bonding Image: Plant Mathematic Plant Plasma Treatment can eliminate sandblasting procedure For Zirconia-Resin cement bonding Mathematic Plant		Journal	Dent Kes J				
Par 2021 Country Iran Objectives The purpose of this study is to evaluate and compare the effect of 3 types of lasers on the bond strength of Zirconia to resin cement. Portularian The Laser increases the adhesive bond values of the Zirconia to the resin cement compared to the untreated surface. The Er-YAG laser was the adhesive adhesive bond values of the Zirconia to the resin cement bonding Image: Partian Participant Partipant Partipant Participant Partipant Participant Participant Par		Author					
Country Iran Objectives The purpose of this study is to evaluate and compare the effect of 3 types of lasers on the bond strength of Zirconia to resin cement. chorclusion The Laser increases the adhesive bond values of the Zirconia to the resin cement compared to the untreated surface. The Er-YAG laser was the most effective, along with sandblasting. full Nonthermal Plasma Treatment can eliminate sandblasting procedure For Zirconia-Resin cement bonding furmal Int J Prosthodont Author Merve A fund Merve A fund Solo fund Solo fund Solo fund Nontkermal attreatment can eliminate sandblasting procedure For Zirconia-Resin cement bonding fund In J Prosthodont fund Merve A fund Merve A fund Solo fund Solo<	16	Year	2021				
Objectives The purpose of this study is to evaluate and compare the effect of 3 types of lasers on the bond strength of Zirconia to resin cement. Objectives The Laser increases the adhesive bond values of the Zirconia to the resin cement compared to the untreated surface. The Er-YAG laser was the most effective, along with sandblasting. Image: Provide the most effective, along with sandblasting. Nonthermal Plasma Treatment can eliminate sandblasting procedure For Zirconia-Resin cement bonding Image: Provide the More A More A More A Image: Provide the More A Provide the effects of nonthermal atmospheric plasma (NTAP) treatment, alone or in combination with sandblasting and primer application in bonding zirconia ceramics to resinous cement. Output Description of Zirconia ceramics. Applying NTAP Openetise NTAP application can be an alternative treatment method to sandblasting for the adhesive cementation of zirconia ceramics. Applying NTAP		Country	Iran				
Conclusion The Laser increases the adhesive bond values of the Zirconia to the resin compared to the untreaded surface. The Er-YAG laser was the most effective, along with sandblasting. File Nonthermal Plasma Treatment can eliminate sandblasting procedure For Zirconia-Resin coment bonding Journal In J Prosthodont Author Merve A Year 2020 Output Turkiye Differition Turkiye Output Turkiye Output Turkiye Output Turkiye Output Turkiye Output Turkiye Differition Turkiye Output Turkiye Output Turkiye Output Turkiye Output Turkiye Output <thturkiye< th=""> <tht< th=""><th></th><th>Objectives</th><th>The purpose of this study is to evaluate and compare the effect of 3 types of lasers on the bond strength of Zirconia to resin cement.</th></tht<></thturkiye<>		Objectives	The purpose of this study is to evaluate and compare the effect of 3 types of lasers on the bond strength of Zirconia to resin cement.				
File Nonthermal Plasma Treatment can eliminate sandblasting procedure For Zirconia-Resin cement bonding Journal Int J Prosthodont Author Merve A Year 2020 Contry Tirkiye Opjectives To evaluate the effects of nonthermal atmospheric plasma (NTAP) treatment, alone or in combination with sandblasting and primer application in bonding zirconia ceramics to resinous cement. Optentives NTAP application can be an alternative treatment method to sandblasting for the adhesive cementation of zirconia ceramics. Applying NTAP		Conclusion	The Laser increases the adhesive bond values of the Zirconia to the resin cement compared to the untreated surface. The Er-YAG laser was the most effective, along with sandblasting.				
Journal Int J Prosthodont Author Merve A Year 2020 Country Turkiye Objectives To evaluate the effects of nonthermal atmospheric plasma (NTAP) treatment, alone or in combination with sandblasting and primer application in bonding zirconia ceramics to resinous cement. Onclusion NTAP application can be an alternative treatment method to sandblasting for the adhesive cementation of zirconia ceramics. Applying NTAP		Title	Nonthermal Plasma Treatment can eliminate sandblasting procedure For Zirconia-Resin cement bonding				
Author Merve A Year 2020 Country Türkiye Objectives To evaluate the effects of nonthermal atmospheric plasma (NTAP) treatment, alone or in combination with sandblasting and primer application in bonding zirconia ceramics to resinous cement. Onclusion NTAP application can be an alternative treatment method to sandblasting for the adhesive cementation of zirconia ceramics. Applying NTAP before primer improves adhesion.		Journal	Int J Prosthodont				
Year 2020 Country Türkiye Objectives To evaluate the effects of nonthermal atmospheric plasma (NTAP) treatment, alone or in combination with sandblasting and primer application in bonding zirconia ceramics to resinous cement. Conclusion NTAP application can be an alternative treatment method to sandblasting for the adhesive cementation of zirconia ceramics. Applying NTAP before primer improves adhesion.		Author	Merve A				
17 Country Türkiye Objectives To evaluate the effects of nonthermal atmospheric plasma (NTAP) treatment, alone or in combination Objectives To evaluate the effects of nonthermal atmospheric plasma (NTAP) treatment, alone or in combination Output NTAP application can be an alternative treatment method to sandblasting for the adhesive cementation of zirconia ceramics. Applying NTAP before primer improves adhesion.		Year	2020				
Objectives To evaluate the effects of nonthermal atmospheric plasma (NTAP) treatment, alone or in combination with sandblasting and primer application in bonding zirconia ceramics to resinous cement. Conclusion NTAP application can be an alternative treatment method to sandblasting for the adhesive cementation of zirconia ceramics. Applying NTAP before primer improves adhesion.	17	Country	Türkiye				
Conclusion NTAP application can be an alternative treatment method to sandblasting for the adhesive cementation of zirconia ceramics. Applying NTAP before primer improves adhesion.		Objectives	To evaluate the effects of nonthermal atmospheric plasma (NTAP) treatment, alone or in combination with sandblasting and primer application in bonding zirconia ceramics to resinous cement.				
		Conclusion	NTAP application can be an alternative treatment method to sandblasting for the adhesive cementation of zirconia ceramics. Applying NTAP before primer improves adhesion.				

Table 2. Synthesis of results in Mpa after thermocycling

Author	T.C.	Control	M.P.A.	тто	M.P.A.
Figueiredo V	5-55ºC 6000 cycles (30 sp)	without surface treatment	6.3	Silica nanofilms	0
Kabiri S	5-55°c – 1000 cycles	Sandblasted 50-micron aluminum oxide particles	6.96	Laser Ergon doped yttrium aluminum garnet.	4.83
Lumkemann K	5-55ºC - 5000 cycles	Without surface treatment	43.7	plasma laser	41.4
Abu Ruja M	5-55ºc - 5000 cycles	Alumina sandblasting	14.51	single pulse online laser 2.5um 4mj 6.7KHz	35.4
Hatami M	5-55th 5000 cycles (30 sp two se)	Without surface treatment	2.32	Laser Ergon doped yttrium aluminum garnet	6.63
Altuntas M	5-55º 5000 cycles	Without surface treatment	2	Ntap Laser + primer	7.2
Koko M	5-55ºC 5000 cycles	Silane Free	0	Silane 5% by weight of MDP	14.7
Sokolowski G	5-55ºC 5000 cycles	Without surface treatment	6.1	Zircos E etched + primer monobond plus	17.7
Sadid-Zadeh R	5th - 55th 1000 cycles	Sandblasting 50umAl2O3	9.9	Zircos E etched + sandblasted	eleven

Zirconia Cementation

(Table 4) contd							
Author	T.C.	Control	M.P.A.	тто	M.P.A.		
Kang CM	5-55°c – 5000 cycles (30s p – 15s t)	Sandblasted with aluminum oxide (50um 3 bar pressure)	10.4	glass ceramic spray deposition + hydrofluoric acid etching 120 seconds	10.1		
Maroun EV	5º to 55º - 3000 cycles (30s p - 2s t)	Lithium disilicate etched with 10% hydrofluoric acid for 20 seconds	34.8	Vitrified with ceramic glaze, then sintered and etched with 10% hydrofluoric acid	24.1		
Saker S	5-55°c- 7500 cycles (30s p – 2s t)	No treatment	9.5	Ceramic glaze etched with 10% hydrofluoric acid for 60 seconds	25.1		
Martins SB	5-55ºC-10000 cycles (30 sp)	Sandblasted with 50um alumina after sintering	3.10	Sandblasted with 120um alumina before sintering	9.70		
Mehari K	5-55ºC - 2500 cycles	Without sandblasting	6.0	Sandblasted with 50-micron aluminum oxide particles	13.4		
Silva Am	5-55°c – 6000 cycles (30s p – 2s t)	Polished Zirconia	19.06	Silica layer coating	8.45		
Chen B.	10,000 thermocycles	Sandblasted with aluminum particles and 10mdp self-adhesive resin cement	14.4	Tribochemical silica coating followed by silanization	14.6		
Khan AA	5-55ºc-6000 cycles (30 s p- 5 st)	Without surface treatment	7.6	coating with tribochemical silica powder (rocatec) at 280 kPa	21.4		

Once the research was carried out, various surface treatments were analyzed to improve the micro retention between the monolithic Zirconia and the resin cement, and a solution to the impossibility of acid etching was found. Below are certain statements in this regard.

5.1. Resin Cements

It should be noted that there is great diversity in the use of resin cement by the authors of the selected studies. This is because there is no single protocol for selecting this type of material regarding adhesion to Zirconia. While it is recognized that recommendations vary regarding the selection of the specific cementation material, it is commonly agreed that resin cement should be used to bond the Zirconia to the tooth structure.

In the present review, it can be observed that all authors chose resin cement as the cementation material in their experiments, except for Saker [18], who used selfadhesive resin cement (RelyX Unicem, 3M ESPE, Seefled, Germany) and compares it with a resin-modified glass ionomer cement (RelyX Luting Plus, Houston, TX, USA) to check their bond strength.

Authors such as Figuereido [23], Hatami [27], Lümkemann [25], and Altuntas [28] used dual-curing resin cement with anaerobic properties (PANAVIA F Kuraray Medical Inc., Okayama, Japan) Kabiri [24] and Kang [16] also used a dual-polymerization resin cement (Variolink N Ivoclar Vivadent, Liechtenstein, Germany). On the other hand, Abu Ruja [26] used another dual-polymerization resin cement (RelyXMTUltimate, 3M ESPE, St Paul, MN, USA). In contrast, Chen [21] used a self-adhesive resin cement containing 10-MDP phosphate (Solocem Coltene) and a dual-curing cement (Variolink N, Ivoclar Vivadent) for comparison. For his part, Khan [22] used self-curing resinous cement with the option of photopolymerization (Multilink®Speed, Ivoclar Vivadent); Maroun [17] used self-adhesive dual resin cement (Relyx U 200, 3M ESPE) while Martins [14] used dual-polymerization resin cement (relyx ARC); On the other hand, Mehari [20] and Sokolowski [30] used Dual Curing Resin (NX3, Kerr); Silva [20] used self-adhesive resin cement (U100 3M ESPE) and finally Sadid - Zadeh [31] used the dual and self-adhesive

resin cement (Speedcem Plus; Ivoclar Vivadent AG).

Furthermore, as can be seen, this variability in the use of cementing agents may have influenced the final bond strength of the Zirconia with the dental structure, together with the surface treatment protocols and adhesion-promoting chemicals.

5.2. Hydrofluoric Acid

The combination of ceramic glaze and hydrofluoric acid resulted in one of the highest bond strength values of

monolithic Zirconia to resin cement. A study by Saker¹⁸, in which zirconia blocks without surface treatment bonded to resin cement blocks were tested for bond strength, and blocks that before bonding were subjected to a ceramic glaze and etching with 10% hydrofluoric acid for 60 seconds, showed that after a thermocycling of 7,500 cycles that the control group had a significantly lower strength than the surface treated group, with a difference of almost 16 megapascals on average. This demonstrates that the combined surface treatment of ceramic glaze and acid etching to generate micro protectants is a valid and robust alternative when cementing zirconia prostheses in the oral cavity is desired.

On the other hand, studies by Kang [16] and Maroun [17] demonstrated very similar bond strength values in Megapascals between zirconia specimens bonded with 10% hydrofluoric acid etching and glazing for 120 seconds and the control group specimens, in the first case after sandblasting with 50um aluminum oxide and in the other, with lithium disilicate blocks etched with 10% hydrofluoric acid for 20 seconds. This means that the bond strength values between the hydrofluoric acid etched specimens and the "gold standard" comparison specimens are practically the same, which demonstrates that the combined technique of ceramic vitrification and subsequent etching with hydrofluoric acid is highly reliable for the cementation of monolithic zirconia restorations in the oral cavity.

5.3. Sandblasting

In two studies, Martins Sb [14] and Mehari K [19]

tested the aluminum oxide sandblasting technique in two different variants; in the first study, the particle size was modified: 50um and 120um, respectively, and in the second, sandblasting with 50um aluminum oxide with zirconia blocks without sandblasting was compared. In both the first and second cases, the bond strength values in Megapascals were significantly higher when sandblasting was used on the zirconia surface and when the aluminum oxide particle size was 120um. In other words, sandblasting with aluminum oxide remains the most reliable surface treatment for achieving the strongest bond between monolithic Zirconia and resin cement. It should be noted that both studies used thermocycling before bond strength testing.

5.4. Tribochemical Silica Coating

Tribochemical silica coating has also been used to improve the resin bonding properties of non-silica materials, such as Zirconia and alumina-based ceramics. The tribochemical silica coating exerts a dual functionality: both increasing the silica content of the ceramic surface and roughening it, thus providing a surface for silanization and, therefore, chemical affinity with the resin [21].

It is developed in 3 steps: sandblasting, friction, and grinding. First, the roughness of the Zirconia is increased, and silica deposition is performed on the surface, which makes it more receptive to chemical bonding through silane coupling agents and the hydroxyl groups of the resin cement [34, 35]. Silva Am [21] showed that the simple application of a silica layer does not increase the retentive capacity of resin cement with Zirconia since the bonding values in Megapascals were significantly lower in the experimental group compared to polished Zirconia and without surface treatment as a control group. The study by Chen B [21], when comparing silica tribochemical coating followed by silanization, significantly increased the bond strength between zirconia and resin cement to values similar to those of the control group treated with sandblasting and self-adhesive cement. A study by Khan AA [22] in which the silica tribochemical coating system "Rocatec" at 280kpa is compared with zirconia blocks without surface treatment, shows a considerable difference in the bond strength of these two groups, even reaching an average of 13 Megapascals between one and the other. This demonstrates that the silica tribochemical coating system followed by silane placement promotes a highly reliable and resistant bond between zirconia and resin cement and can be considered a suitable surface treatment option during the clinical practice of prosthetic restoration. It should be emphasized that using a layer of silica nanoparticles without tribochemical treatment was insufficient to generate bond strength in Zirconia. This fact should be considered after the study by Figueiredo V [24] who observed premature de-cementation of the specimens even before they were subjected to tensile tests.

5.5. Laser

Another surface treatment option that has been widely tested is Laser. One of the most widely used in dentistry is Er: YAG (Ergon doped yttrium aluminum garnet), which has been shown to improve bond strength values between zirconia and resin cement compared to specimens without surface treatment. However, once it is tested with 50um aluminum oxide sandblasting, it tends to drop considerably in performance [24, 27], demonstrating that this is an up-and-coming field in adhesion but still needs more research to reach the necessary levels of clinical recommendation. On the other hand, in a study performed by Lumkemann K [25], using the plasma laser compared to specimens without surface treatment, a minimal difference was observed between the groups, confirming the abovementioned study by Abu Ruja M [26] in which the single pulse laser was tested in comparison with sandblasting with aluminum oxide, observing a statistically significant difference between the two groups, showing values in Megapascals much higher to the Laser compared to sandblasting. This result is encouraging for the Laser as a surface preparation system for Zirconia. The same difference was observed in the Altuntas M [28] study between the Ntap laser followed by MDP primer placement and specimens without surface treatment, indicating, once again, that the combination of surface treatments is the key to achieving high bond strength values and thus ensuring the long-term success of zirconia restorations.

5.6. MDP

In an exciting study, Koko M 30 demonstrated MDP silane's excellent *in vitro* performance at 5% by weight compared to a control group without silane. The bond strength values in the control group were lower than those of the silanized group. This shows that MDP silane constitutes another essential tool in the arsenal of surface treatments to improve the bond between zirconia and resin cement.

5.6.1. Zircos E

Recently, the Zircos E etching system (ZSAT: Zirconia Surface Architecturing Technique, M&C Dental Co., Eunjin Chemical Co., Seoul, Korea), a mixture of nitric acid and hydrofluoric acid that can be applied at room temperature, has been introduced to the world of zirconia bonding. An increase in surface area by preconditioning could improve the interfacial adhesion and eventually increase the bond strength between the material and resin cement [36]. The results of the studies by Sokolowski G [30] and Sadid-Zadeh R [31] show that the Zircos E system, followed by priming and sandblasting, respectively, substantially improves the adhesive bond values between zirconia and resin cement. This result makes it possible to conceive the dual-acid system as a valid alternative when preparing the surface of monolithic Zirconia before undergoing resin cementation. However, more studies of this type are needed to corroborate the results of the Zircos E system as a surface preparation agent before cementation [37, 38].

CONCLUSION

Under the limitations of the present systematic review, we can conclude that:

- Zirconia is treated with mechanical and chemical surfacemodifying agents, substantially improving its adhesive ability with resin cement.
- Aluminum oxide sandblasting, hydrofluoric acid etching, tribochemical silica coating, Laser, and etching with a combination of acids in the Zircos E system are micromechanical treatments that improve the bond strength between zirconia and resin cements.
- MDP silane agent is an effective chemical treatment to improve the bond strength between zirconia and resin cements.
- Coating exclusively with a silica layer does not improve the bond strength between zirconia and resin cements.

IMPLICATIONS FOR CLINICAL PRACTICE

Given that the clinical success of an indirect restoration depends on its correct cementation, it is essential to know the surface treatment that generates the most significant resistance between zirconia restorations and resin cement.

AUTHORS' CONTRIBUTION

It is hereby acknowledged that all authors have accepted responsibility for the manuscript's content and consented to itssubmission. They have meticulously reviewed all results and unanimously approved the final version of the manuscript.

LIST OF ABBREVIATIONS

- HF = Hydrofluoric Acid
- SBS = Shear Strength

MDP = Methacryloyloxydecyl Dihydrogen Phosphate

CONSENT FOR PUBLICATION

Not applicable.

STANDARDS OF REPORTING

PRISMA guidelines and methodology were followed.

AVAIALABILITY OF DATA AND MATERIALS

All the data and supportive information are provided within the article.

FUNDING

None.

CONFLICT OF INTEREST

The authors declared no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

Declared none.

SUPPLEMENTARY MATERIAL

PRISMA checklist is available as supplementary material on the publisher's website along with the published article.

Supplementary material is available on the publisher's website along with the published article.

REFERENCES

- Altan B, Cinar S, Tuncelli B. Evaluation of shear bond strength of zirconia-based monolithic CAD-CAM materials to resin cement after different surface treatments. Niger J Clin Pract 2019; 22(11): 1475-82.
- http://dx.doi.org/10.4103/njcp.njcp_157_19 PMID: 31719267
- [2] Krishnamoorthi D, Thomas PA, Mohan J, Raju R, Rajajayam S, Venkatesan S. Digital smile design. J Pharm Bioallied Sci 2022; 14(5) (Suppl. 1): 43. http://dx.doi.org/10.4103/jpbs.jpbs 164 22 PMID: 36110736
- [3] Bacchi A, Cesar PF. Advances in ceramics for dental applications.
- Dent Clin North Am 2022; 66(4): 591-602. http://dx.doi.org/10.1016/j.cden.2022.05.007 PMID: 36216448
- [4] Pjetursson BE, Valente NA, Strasding M, Zwahlen M, Liu S, Sailer I. A systematic review of the survival and complication rates of zirconia-ceramic and metal-ceramic single crowns. Clin Oral Implants Res 2018; 29(S16) (Suppl. 16): 199-214. http://dx.doi.org/10.1111/clr.13306 PMID: 30328190
- [5] Shelar P, Abdolvand H, Butler S. On the behaviour of zirconiabased dental materials: A review. J Mech Behav Biomed Mater 2021; 124: 104861. http://dx.doi.org/10.1016/j.jmbbm.2021.104861 PMID: 34600431
- [6] Silva LH, Lima E, Miranda RBP, Favero SS, Lohbauer U, Cesar PF. Dental ceramics: A review of new materials and processing methods. Braz Oral Res 2017; 31 (Suppl. 1): e58. http://dx.doi.org/10.1590/1807-3107bor-2017.vol31.0058 PMID: 28902238
- [7] Alammar A, Blatz MB. The resin bond to high-translucent zirconia—A systematic review. J Esthet Restor Dent 2022; 34(1): 117-35.

http://dx.doi.org/10.1111/jerd.12876 PMID: 35072329

[8] Özcan M, Bernasconi M. Adhesion to zirconia used for dental restorations: A systematic review and meta-analysis. J Adhes Dent 2015; 17(1): 7-26.

http://dx.doi.org/10.3290/j.jad.a33525 PMID: 25646166

[9] Blatz MB, Conejo J, Alammar A, Ayub J. Current protocols for resin-bonded dental ceramics. Dent Clin North Am 2022; 66(4): 603-25.

http://dx.doi.org/10.1016/j.cden.2022.05.008 PMID: 36216449

- [10] Feiz A, Rastghalam N, Swift EJ Jr. Effect of different cleansing methods on the artificially aged bond strength of resin to contaminated zirconia: A systematic review. J Prosthodont 2022; 31(9): e125-37.
- http://dx.doi.org/10.1111/jopr.13580 PMID: 35912851
 [11] Seo SH, Kim JE, Nam NE, Moon HS. Effect of air abrasion, acid etching, and aging on the shear bond strength with resin cement to 3Y-TZP zirconia. J Mech Behav Biomed Mater 2022: 134:
- to 3Y-TZP zirconia. J Mech Behav Biomed Mater 2022; 134: 105348. http://dx.doi.org/10.1016/j.jmbbm.2022.105348 PMID: 35843114
- [12] Khanlar LN, Abdou A, Takagaki T, *et al*. The effects of different silicatization and silanization protocols on the bond durability of resin cements to new high-translucent zirconia. Clin Oral Investig 2022; 26(4): 3547-61.

http://dx.doi.org/10.1007/s00784-021-04323-7 PMID: 34859327

[13] Yoshida K. Influence of alumina air-abrasion for highly translucent partially stabilized Zirconia on resin cement's flexural strength, surface properties, and bond strength. J Appl Oral Sci 2020; 28: e20190371.

http://dx.doi.org/10.1590/1678-7757-2019-0371 PMID: 32049135

[14] Martins SB, Abi-Rached FO, Adabo GL, Baldissara P, Fonseca RG.

Influence of particle and air-abrasion moment on Y-TZP surface characterization and bond strength. J Prosthodont 2019; 28(1): e271-8.

http://dx.doi.org/10.1111/jopr.12718 PMID: 29235196

- [15] Sciasci P, Abi-Rached FO, Adabo GL, Baldissara P, Fonseca RG. Effect of surface treatments on the shear bond strength of luting cements to Y-TZP ceramic. J Prosthet Dent 2015; 113(3): 212-9. http://dx.doi.org/10.1016/j.prosdent.2014.09.012 PMID: 25453565
- [16] Kang CM, Lin DJ, Feng SW, Hung CY, Iwaguro S, Peng TY. Innovation glass-ceramic spray deposition technology improving the adhesive performance for zirconium-based dental restorations. Int J Mol Sci 2022; 23(21): 12783. http://dx.doi.org/10.3390/ijms232112783
- [17] Maroun EV, Guimarães JGA, de Miranda WG Jr, Netto LRC, Elias AB, da Silva EM. Bond strength stability of self-adhesive resin cement to etched vitrified yttria-stabilized tetragonal zirconia polycrystal ceramic after thermomechanical cycling. Oper Dent 2019; 44(5): 545-55.

http://dx.doi.org/10.2341/18-131-L PMID: 30849012

- [18] Saker S, Hashem D. Influence of surface modification protocol and type of luting cement on bonding of monolithic zirconia to dentin substrate. J Contemp Dent Pract 2021; 21(12): 1342-9. http://dx.doi.org/10.5005/jp-journals-10024-2984 PMID: 33893256
- [19] Gallardo FF, Mehari K, Parke AS, Vandewalle KS. Assessing the effects of air abrasion with aluminum oxide or glass beads to zirconia on the bond strength of cement. J Contemp Dent Pract 2020; 21(7): 713-7.

http://dx.doi.org/10.5005/jp-journals-10024-2879 PMID: 33020351

[20] Silva AM, Figueiredo VMG, Massi M, et al. Silicon-based film on the yttria-stabilized tetragonal zirconia polycrystal: Surface and shear bond strength analysis. J Investig Clin Dent 2019; 10(4): e12477.

http://dx.doi.org/10.1111/jicd.12477 PMID: 31713296

[21] Chen B, Yan Y, Xie H, Meng H, Zhang H, Chen C. Effects of tribochemical silica coating and alumina-particle air abrasion on 3Y-TZP and 5Y-TZP: Evaluation of surface hardness, roughness, bonding, and phase transformation. J Adhes Dent 2020; 22(4): 373-82.

http://dx.doi.org/10.3290/j.jad.a44868 PMID: 32666063

- [22] Khan AA, Mohamed BA, Mirza EH, Syed J, Divakar DD, Vallittu PK. Surface wettability and nano roughness at different grit blasting operational pressures and their effects on resin cement to zirconia adhesion. Dent Mater J 2019; 38(3): 388-95. http://dx.doi.org/10.4012/dmj.2018-137 PMID: 30867349
- [23] Figueiredo VMG, Silva AM, Massi M, et al. Effect of the nanofilmcoated zirconia ceramic on resin cement bond strength. J Dent Res Dent Clin Dent Prospect 2022; 16(3): 170-8. http://dx.doi.org/10.34172/joddd.2022.029 PMID: 36704190
- [24] Kabiri S, Neshati A, Rohani B. Effect of different surface treatments and pressure conditions on shear bond strength of zirconia ceramic to composite resin. Front Dent 2021; 18: 26. http://dx.doi.org/10.18502/fid.v18i26.6936 PMID: 35965716
- [25] Lümkemann N, Eichberger M, Stawarczyk B. Different surface modifications combined with universal adhesives: The impact on the bonding properties of zirconia to composite resin cement. Clin Oral Investig 2019; 23(11): 3941-50.

http://dx.doi.org/10.1007/s00784-019-02825-z PMID: 30756181

- [26] Abu Ruja M, De Souza GM, Finer Y. Ultrashort-pulse laser as a surface treatment for bonding between zirconia and resin cement. Dent Mater 2019; 35(11): 1545-56. http://dx.doi.org/10.1016/j.dental.2019.07.009 PMID: 31400982
- [27] Molazem M, Hatami M, Lotfi-Kamran M, Davari A. Effect of different laser treatments on the shear bond strength of zirconia ceramic to resin cement. Dent Res J 2021; 18(1): 56.
- http://dx.doi.org/10.4103/1735-3327.321867 PMID: 34497691
 [28] Altuntas M, Colgecen O, Ercan U, Cukur E. Nonthermal Plasma Treatment Can Eliminate Sandblasting Procedure For Zirconia-Resin Cement Bonding. Int J Prosthodont 2022; 35(6): 752-60.

http://dx.doi.org/10.11607/ijp.7302 PMID: 36645863

- [29] Koko M, Takagaki T, Abdou A, et al. Effects of the ratio of silane to 10-methacryloyloxydecyl dihydrogenphosphate (MDP) in primer on bonding performance of silica-based and zirconia ceramics. J Mech Behav Biomed Mater 2020; 112: 104026. http://dx.doi.org/10.1016/j.jmbbm.2020.104026 PMID: 32841834
- [30] Sokolowski G, Szczesio-Wlodarczyk A, Szynkowska-Jóźwik MI, et al. The shear bond strength of resin-based luting cement to zirconia ceramics after different surface treatments. Materials 2023; 16(15): 5433. http://dx.doi.org/10.3390/ma16155433 PMID: 37570137
- [31] Sadid-Zadeh R, Strazzella A, Li R, Makwoka S. Effect of zirconia etching solution on the shear bond strength between zirconia and resin cement. J Prosthet Dent 2021; 126(5): 693-7. http://dx.doi.org/10.1016/j.prosdent.2020.09.016 PMID: 33162113
- [32] Zhang Y, Lawn BR. Evaluating dental zirconia. Dent Mater 2019; 35(1): 15-23. http://dx.doi.org/10.1016/j.dental.2018.08.291 PMID: 30172379
- [33] Zarone F, Di Mauro MI, Ausiello P, Ruggiero G, Sorrentino R. Current status on lithium disilicate and zirconia: A narrative review. BMC Oral Health 2019; 19(1): 134. http://dx.doi.org/10.1186/s12903-019-0838-x PMID: 31272441
- [34] Yue X, Hou X, Gao J, Bao P, Shen J. Effects of MDP-based primers on shear bond strength between resin cement and zirconia. Exp Ther Med 2019; 17(5): 3564-72. http://dx.doi.org/10.3892/etm.2019.7382 PMID: 30988738
- [35] Nagaoka N, Yoshihara K, Tamada Y, Yoshida Y, Meerbeek BV. Ultrastructure and bonding properties of tribochemical silicacoated zirconia. Dent Mater J 2019; 38(1): 107-13. http://dx.doi.org/10.4012/dmj.2017-397 PMID: 30298858
- [36] Cho JH, Kim SJ, Shim JS, Lee KW. Effect of zirconia surface treatment using nitric acid-hydrofluoric acid on the shear bond strengths of resin cements. J Adv Prosthodont 2017; 9(2): 77-84. http://dx.doi.org/10.4047/jap.2017.9.2.77 PMID: 28435615
- [37] Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021; 372(71): n71. http://dx.doi.org/10.1136/bmj.n71 PMID: 33782057
- [38] Whiting P, Savović J, Higgins JPT, et al. ROBIS: A new tool to assess risk of bias in systematic reviews was developed. J Clin Epidemiol 2016; 69: 225-34. http://dx.doi.org/10.1016/j.jclinepi.2015.06.005 PMID: 26092286