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Abstract:

Background: Considering the extensive innervation of the pulp tissue, asymptomatic irreversible pulpitis (AIP) or
“silent pulpitis” represents a confounding clinical condition. Previous studies have attributed the painless nature of
AIP to the inhibition of pulpal nociceptors by local endogenous analgesics. However, there is a lack of recent
information concerning its painless nature, and paradoxically, patients with dental pain are diagnosed with AIP daily
worldwide. In addition, no recent review has explored the potential AIP-related mechanisms.

Objective: This narrative review aims to explore and update the potential mechanisms involved in the painless
nature of AIP to improve our current understanding of the asymptomatic character of this clinical condition.

Methods: An electronic search was performed in the PubMed and Scopus databases, using as search terms
“asymptomatic irreversible pulpitis,” “dental pulp,” “endogenous opioids,” “endogenous cannabinoids,”
“somatostatin,” “GABA,” “bombesin,” “cortistatin,” “galanin,” and “specialized pro-resolving lipid mediators.”

"o«

Results: Endogenous opioids, G protein-activated inwardly rectifying K* channels, endogenous cannabinoids, y-
aminobutyric acid, and neuropeptides (i.e. somatostatin, cortistatin, galanin, and bombesin) could be involved in AIP-
related analgesia. Additionally, specialized pro-resolving lipid mediators, such as lipoxins, resolvins, maresins, and
protectins, as well as oxytocin, phoenixin, opiorphin, and adipokines, could also be involved in this clinical condition.

Conclusion: This narrative review provides updated information on the potentially involved mechanisms in AIP.
Nevertheless, the precise mechanisms responsible for the lack of symptoms in AIP remain to be elucidated, and
further research is warranted.

Keywords: Asymptomatic irreversible pulpitis, Analgesia, Endogenous opioids, Endogenous cannabinoids,
Neuropeptides, Phoenixin.

License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are
credited.

© 2024 The Author(s). Published by Bentham Open.
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public
CrossMark

Received: September 09, 2023
Revised: December 29, 2023
Accepted: January 25, 2024
Published: February 23, 2024

Cite as: Cabrera-Abad D, Jara-Vergara V, Alvarez-Vasquez J. Exploring the Painless Nature and Potential Mechanisms of ®
Asymptomatic Irreversible Pulpitis: A Narrative Review . Open Dent J, 2024; 18: €18742106281444.

http://dx.doi.org/10.2174/0118742106281444240219050149

*Address correspondence to this author at the Department of Endodontics, Faculty of Dentistry, University of Cuenca,
010107 Cuenca, Ecuador; E-mail: jose.alvarezv@ucuenca.edu.ec

Send Orders for Reprints to
reprints@benthamscience.net

1. INTRODUCTION dures, dental trauma, and periodontal disease [3] — the

. . . . first being the main threat to dental pulp [4]. However,
The dental pulp is a highly vascularized, innervated pulpitis is the most common inflammatory disease in

connective tissue that provides vitality and sensitivity to humans and other mammals [5] that can be reversible or

teeth [1, 2]. This tissue experiences inflammatory irreversible. Irreversible pulpitis can be symptomatic or
reactions in response to dental caries, restorative proce- asymptomatic [6].
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Considering the extensive nerve plexus of the pulp
tissue, asymptomatic irreversible pulpitis (AIP) or “silent
pulpitis” is a confounding clinical condition [7]. Patients
do not experience pain (6) despite inherent inflammatory
processes in the affected tooth. Several studies have
identified local analgesic agents in the dental pulp,
including endogenous opioids [8-10], cannabinoids [11,
12], gamma-aminobutyric acid (GABA) [13, 14], and
somatostatin [10, 15]. These agents could inhibit pulpal
nociceptors and may be responsible for the asymptomatic
nature of AIP [7].

Despite these studies investigating the dental pulp,
there is a lack of updated literature reviews that explore
the factors involved in the asymptomatic nature of AIP,
and the most recent foundational study on the painless
nature of AIP dates back two decades [16]. Moreover,
patients with dental diseases are diagnosed with AIP on a
daily basis worldwide. Therefore, this narrative review
aimed to compile updated information on potential factors
involved in the mechanisms of analgesia underlying AIP to
improve our current understanding of its painless nature
and to provide insights for future studies elucidating the
precise mechanisms underlying the lack of symptoms in
AIP.

2. MATERIAL AND METHODS

We searched the available literature in the PubMed
and Scopus databases to identify relevant articles
published up to January 25, 2022, describing the
expression of ligands and/or receptors or other factors
that potentially regulate the asymptomatic nature of AIP.
The following search terms were used: “asymptomatic
irreversible pulpitis,” “dental pulp,” “endogenous opioids,”
“endogenous cannabinoids,” “somatostatin,” “GABA,”
“bombesin,” “cortistatin,” “galanin,” and “specialized pro-
resolving lipid mediators.” Only articles published in
English were included in the present study. The search
was limited to clinical trials, in vitro studies, literature
reviews, systematic reviews, and textbook chapters.
Interim  reports, abstracts only, letters, brief
communications, studies that did not focus on the
asymptomatic nature of AIP, and duplicated works were
excluded. Subsequently, the titles and abstracts of
relevant articles were reviewed, and a manual search of
the references of each selected article was performed to
complement the electronic search. Further, endodontic
journals were examined to identify relevant articles “in
press” or in “early view” status.

3. POTENTIAL FACTORS INVOLVED IN ANALGESIA
DURING AIP

Factors that could potentially be involved in the
mechanisms of analgesia underlying AIP include
endogenous opioids, G protein-activated inwardly
rectifying K* channels (GIRK), endogenous cannabinoids,
y-aminobutyric acid (GABA), neuropeptides (somatostatin,
cortistatin, galanin, and bombesin), and specialized pro-
resolving lipid mediators (i.e. lipoxins, resolvins, and
maresins). We also included a section on miscellaneous
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factors that could potentially be involved in AIP, such as
bacteria and their antinociceptive effects, oxytocin,
phoenixin, opiorphin, and adipokines. All but bacteria are
endogenous biomolecules potentially involved in the
painless nature of AIP. The ligands/receptors of these
biomolecules have already been identified in the dental
pulp tissue and/or the trigeminal ganglion (TG). However,
in some cases, information is not yet available (Table 1).

3.1. Endogenous Opioids

The opioid system functions as an endogenous
mechanism of antinociception through three pathways:
inhibition of nociceptors at the supraspinal level, inhibition
of nociceptors at the level of the dorsal horn of the spinal
cord, and activation of the descending inhibitory pathways
[15]. This system is distributed in both the central nervous
system (CNS) and peripheral nervous system (PNS)
[17-20]. It is comprised of endogenous opioid peptides
(EOP) (i.e., enkephalins, dynorphins, B-endorphins, and
nociceptin/orphanin FQ) [17] released by T- and B-
lymphocytes, monocytes, macrophages, and granulocytes
[21-24]; and opioid receptors (OR) that are located in the
nerve endings of the primary afferent fibers [25, 26]. Met-
enkephalins, dynorphins, and B-endorphins have been
found in the dental pulp [10, 27, 28]; however, the
presence of nociceptin/orphanin has not yet been
demonstrated.

The receptors found in the afferent sensory nerves are
1 (MOR), 6 (DOR), and k (KOR) [17, 23, 29-32], along with
the nociceptin/orphanin receptor (NOR), also known as the
orphan opioid receptor-like receptor (ORL) [17, 33]. ORs,
especially DOR, are involved in neuroprotection against
hypoxia or ischemia [34-37]. They also inhibit voltage-
gated Ca** channels [38], reduce the release of neuro-
transmitters [17], and allow neuronal hyperpolarization
that is mediated by K channels [39]. The presence of
MOR [9] and DOR [40] in the dental pulp has been
confirmed; however, the KOR expression has not yet been
demonstrated.

Under normal conditions, the ORs are inaccessible due
to the perineural barrier [41-43]; however, this is altered
in initial inflammatory conditions that allow for the
passage of ligands to their receptors [30]. In late
inflammatory stages, the number of ORs increases, along
with their axonal transport to the periphery [9, 24] and
sprouting of new nerve endings [44, 45] that would
explain the opioid analgesic activity in inflamed dental
pulps [9]. In these states, B-endorphins become unstable
due to their rapid metabolism; therefore, the resulting
analgesia could be induced by their fragments after their
biotransformation [46]. In contrast, a previous study
showed that antinociception failed to increase despite the
increased leukocyte recruitment, which could be
attributed to the low amount of ORs in the early
inflammatory stage [47]. The duration of inflammation
could be a decisive factor in terms of the analgesic
capacity of the endogenous opioid system, such that in
both types of irreversible pulpitis (symptomatic and
asymptomatic), an inflammatory process is established;
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however, pain is absent in the latter scenario. In
endogenous analgesia, the number of leukocytes, ORs,
duration of inflammation, and binding efficiency of ORs
with G-protein in neurons interact in a simultaneous
manner [45, 48, 49].

Central and peripheral ORs interact in the initial
inflammatory stages [47, 50-52]; however, in the late
stages, only peripheral ORs function [23, 53, 54],
demonstrating high participation of peripheral opioid
mechanisms as inflammation advances and becomes more
severe [48, 51, 55, 56]. Moreover, during chronic
inflammation, at the central level, changes in the ORs are
not observed, but the levels of EOP increase [32].
Therefore, further studies are required to determine the
differences in central responses that occur at different
times and in different types of dental injuries [57].

Bradykinin stimulation [58], orthodontic movements
[59], and cavity preparation [60] increase the EOP levels
in the dental pulp [15, 55, 61]. Moreover, other substances
exert an antinociceptive effect as a secondary function by
stimulating the release of EOPs in a similar manner to the
effects exerted by substance P (SP) whose N-terminal
fragment acts as a ligand for MOR [62, 63], calcitonin
gene-related peptide (CGRP) that suppresses IL-2
production [64], and IL-4 that promotes change in the
phenotype of macrophages from M1 to M2 and stimulates
M2 to produce EOP in injured nerves [65]. Additionally,
interleukin 1B (IL-1B), corticotropin-releasing factor (CRF)
[66], norepinephrine, and CXCL2/3 stimulate the release
of EOP by leukocytes [21, 50, 67-72], and thus, exert a
peripheral analgesic effect [50, 69-71, 73]. Moreover,
some opioid agonists exert anti-inflammatory effects,
probably involving ORs on immune cells [74].

In contrast, M2 macrophages can help in resolving
inflammatory pain by transferring their mitochondria to
the neurons of the dorsal root ganglion (DRG) and
stimulating the switch from neuronal glycolytic
metabolism to more oxidative metabolism, which in turn
regulates the neuronal activity and allows for the
resolution of inflammatory pain away from the
inflammation site [75]. An increase in the M2 levels has
been observed in the TG as pulpitis progresses, showing
anti-inflammatory effects [76]. Moreover, this analgesic
effect could be attributed to the secretion of IL-10 because
of its anti-inflammatory action [77-81] and a reduction in
the expression of voltage-gated sodium channels and a
number of currents sensitive to tetrodotoxin [82].
However, the resolution of inflammation is insufficient to
resolve the pain [80].

3.2. GIRK

GIRK are G protein-activated effector ion channels [83]
that participate in opioid-mediated antinociception in the
CNS and PNS via hyperpolarization of the neuronal
membrane, which in turn inhibits the propagation of
action potentials [84-90]. At the spinal cord level, these
receptors contribute to the analgesic effects of MOR and
DOR but not those of KOR [88]. Furthermore, GIRK
channels are crucial for galanin action, as GalRl1 and

GalR3 open the K' channels. For neuropeptide Y, which
presynaptically depresses the miniature excitatory
synaptic currents through the Y2 receptor, somatostatin
activates the GIRK channels of SST4 receptors [91-95].

The GIRK 1 and 2 receptors are expressed in the TG
neurons, thus contributing to peripheral opioid analgesia
in the craniofacial region [96]. Therefore, these channels
could be present in the dental pulp; however, to date, no
study has confirmed this hypothesis.

3.3. Endogenous Cannabinoids

The endogenous opioid and cannabinoid systems are
involved in antinociception through different pathways
[97-104]. Moreover, they activate the G-protein-coupled
receptors (GPCR) and can interact either directly
(receptor heteromerization) or indirectly (cross-signaling)
[97, 98, 105]. Moreover, cannabinoid receptors (CBRs)
activate GIRK, which in turn reduces the release of
neurotransmitters in the opioid system [106]. The
endocannabinoid system has receptors (CB1R and CB2R),
endogenous ligands (anandamide and 2-
arachidonylglycerol), and enzymes that degrade and
synthesize the latter, performing functions at the central
and peripheral levels [107, 108]. This system is expressed
in both the ascending and descending pain pathways,
producing antinociception at the supraspinal, spinal, and
peripheral levels [102, 109-112].  Additionally,
lipopolysaccharides (LPS) increase the levels of
anandamide and inhibit the enzyme fatty acid amide
hydrolase (FAAH) in the lymphocytes [113], and increase
the levels of 2-arachidonylglycerol (2-AG) in the
macrophages and platelets [114].

CB1R and CB2R are mainly expressed in the nervous
and immune systems, respectively [115-119], and the cells
of these systems secrete endocannabinoids [23, 120, 121].
CB1Rs have been identified in various areas related to
pain in the CNS, where they regulate signals from neurons
originating from the nociceptive regions of the spinal cord,
producing antinociception [110-112, 118]. CB1IR of the
ventrolateral periaqueductal gray matter (vIPAG) aids in
modulating the nociceptive signals from the TG nerve,
specifically in capsaicin-induced pulpal pain [122]. The
exact mechanism of this modulation is unclear; however,
CBI1R in the PAG interacts with other systems to modulate
the nociceptive signals [123, 124], such as orexin 1
receptors (OX1Rs). When activated, these receptors
induce the release of 2-AG, which inhibits the release of
GABA through the pre-synaptic CB1R—a phenomenon
known as disinhibition [123]. Tonic inhibition of
GABAergic transmission activates the vIPAG; thus,
activating the descending pain inhibition pathway [125].
This demonstrates the antinociceptive effects of orexin-A
on the VvIPAG and its relationship with the
endocannabinoid system [123].

The CBR signaling pathway acts through the inhibition

of cyclic-AMP formation and modulation of Ca** and K*
channels [126]. Different ligands differentially activate
these signaling pathways through CB1R and CB2R—
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which is termed the “biased signaling” [127]. Further
studies at the pulp level are suggested as this signaling
may preferentially provide higher analgesia. Additionally,
the molecular mechanisms underlying the antinociceptive
and antihyperalgesic effects of CBRs remain unclear [115].
Endocannabinoids, such as anandamide, 2-AG, and the
other less-studied subtypes, including N-arachidonoyl-
dopamine (NADA), noladin ether, and virodhamine,
interact with receptors other than CB1R and CB2R [105,
128, 129].

In contrast, transient receptor potential vanilloid
subtype 1 channels (TRPV1) are activated by anandamide
and NADA and are co-expressed with CB1R and CB2R in
some tissues, including the dental pulp [128, 130]. This co-
expression or “cross-talk” between CBR and TRPV1 may
be relevant in pulpal analgesia. It has long been known
that only CBRs attenuate and TRPV1 increases
nociception. However, studies have shown that TRPV1
activation potentiates the supraspinal pain inhibitory
pathways, and desensitization of TRPV1 produces
analgesia [131, 132]. Pre- and post-synaptic activation of
TRPV1 or pre-synaptic activation of CB1R stimulates the
output excitatory neurons through glutamate release or
disinhibition of GABA tonic control, respectively, at the
vIPAG level. This leads to glutamate release in the rostral
ventromedial medulla (RVM) and activation of the “off”
neurons in this area, with a subsequent antinociception
[133, 134]. However, further studies are required to
analyze the factors that activate these pathways.

TRP channels also induce peripheral antihyperalgesia
and antinociception [135, 136]. However, their mechanism
of action is complex, as they generate incoming ionic
currents more associated with nociception. Partial
activation of these channels may not necessarily generate
neuronal excitation [137-139]. The incoming currents
could fail to reach threshold levels to excite the
nociceptors, or the slow depolarization of the membrane
potential may inactivate these channels [140].

CBIR and CB2R expression in the dental pulp of
humans and rats has been previously demonstrated [10,
11, 130, 141-143]. CB2R is expressed in the human pulp
cells [130, 142] and myofascial fibroblasts [144], whereas
CB1R is preferentially expressed in odontoblasts,
odontoblast-like cells, and pulpal nerve fibers [11, 145].
Although the expression of CBRs has not been shown in
dental pulp fibroblasts, it has been reported that
fibroblasts have the necessary enzymes to produce
endocannabinoids and act in an autocrine or paracrine
way when interacting with leukocytes [144, 146, 147]. A
previous study showed that there were no statistically
significant differences in the expression of CB1R between
painful and non-painful dental pulps [11].

In contrast, CB1R may be activated by stretching in
the absence of a ligand [119], wherein hydrostatic
pressure may directly activate OR and CBR, releasing
endorphins and endocannabinoids, as has been reported
at the PAG level [148]. In the dental pulp, an increase in
pressure during an inflammatory process may activate
these receptors, although this remains to be explored.
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However, the role of CB2Rs and their agonists has been
investigated in pulpal antinociception [149] and in animal
models of acute, chronic, and neuropathic pain [150].

CB2R agonists can inhibit inflammatory pain through
their anti-inflammatory effects [151, 152]. Moreover, the
expression of cytokines and CBR have a reciprocal
regulatory relationship. Thus, the activation of these
receptors in macrophages inhibits the production of
proinflammatory cytokines [153], thus allowing the change
from immune responses mediated by Thl
(proinflammatory) to Th2 (anti-inflammatory) through the
CB2R [154]. Moreover, IL-4 increases the CBI1R
expression in leukocytes [155], and IFN-y and IL-12
reduce the FAAH activity [113]. Taken together, the
increase in CBR expression by cytokines could be a
mechanism of autoregulation of inflammation [156].

3.4. GABA

GABA neurotransmitter plays a primary inhibitory role
in the CNS and PNS [157-161]. When released at the
neuronal synapses, it activates different classes of
receptors or returns to the nerve terminals via a Na'-
dependent transporter [158-160]. Ionotropic receptors
(GABA, and GABA_.) participate in rapid synaptic
transmission and modulate neuronal activity by gating the
chloride ions [13, 159], hyperpolarizing the neuronal
membranes, and inhibiting the propagation of action
potentials, leading to short-term, fast-acting inhibitory
currents [157, 160]. In contrast, the slow-acting
metabotropic receptors (GABA;) belong to the GPCR
superfamily and exert inhibitory actions through the
inhibition of voltage-gated Ca’* channels and GIRK
activation [162-167]. These receptors have been found in
the dental pulp tissue [13] and TG [163]. Furthermore,
GABAergic neurons are activated at the trigeminal nuclear
complex during tooth pulp stimulation [161].

However, inflammation, necrosis, or areas of pulpal
hypoxia can increase the GABA levels above the nominal
levels at rest, which may explain the absence of symptoms in
these pulps [12, 13]. Neuroinflammation can be modulated
by GABAergic signaling [157], as GABA; receptors are
involved in pain management and analgesia; thus, GABA and
GABA,; receptors present in the human pulp may also be
involved [164]. The clinical importance of peripheral GABA;
receptors may be related to the peripheral analgesic effects
of GABA; agonists that modulate or attenuated nociceptive
behavior in the animal models of pain [165]. In a previous
study [166], isovaline, baclofen, and GABA attenuated
allodynia induced by prostaglandin E2 injection. Another
study revealed that baclofen suppressed pain in small-
diameter TG neurons in rats [162].

In contrast, GABAergic interneurons mediate the
endogenous release of 5-hydroxytryptamine (5-HT). The 5-
HT3 receptors are involved in antinociceptive effects [167]
that are attenuated by the opioid antagonist naloxone,
suggesting that these neurons may be associated with
endogenous opioids [168].



Exploring the Painless Nature and Potential Mechanisms of Asymptomatic Irreversible Pulpitis 5

3.5. Neuropeptides: Somatostatin, Cortistatin,

Galanin, and Bombesin

Neuropeptides play a major role in the perception of
pain [169], but some can mediate analgesic mechanisms
[170]. In this section, we describe the potential analgesic
roles of somatostatin, cortistatin, galanin, and bombesin in
AIP.

3.5.1. Somatostatin (SST)

SST is a peptide hormone [171-173] that is widely
distributed in the CNS and peripheral tissues [171, 174]
and is produced by neurons and neuroendocrine,
inflammatory, and immune cells in response to ions,
nutrients, neuropeptides, neurotransmitters, hormones,
growth factors, cytokines [173], and noxious heat or
chemical stimuli [175]. There are two SST isoforms,
SST-14 and SST-28, that differ in the number of amino
acids [175-177] and five GPCR-type receptors (SSTR 1-5)
[178].

SST performs antinociceptive functions [179-182] by
affecting neurotransmission through its receptors,
decreasing the conductance of voltage-gated Ca**
channels [172, 183], and activating K* channels [184-186].
SST decreases neurogenic inflammation [175] due to its
inhibitory action [175, 187, 188] by decreasing the release
of IFN-y, reactive oxygen species, CGRP [175], SP [189],
and immunoglobulins from B-cells [190]. Moreover, SST
can regulate the pulpal blood flow [191] as the peptidergic
nerves containing SST are distributed near the blood
vessels [10, 192-194].

3.5.2. Cortistatin (CORT)

CORT, a cyclic neuropeptide, is predominantly
expressed in the cerebral cortex [195-197], spinal cord
neurons, GABAergic inhibitory interneurons [198-200],
immune cells (lymphocytes, monocytes, macrophages, and
dendritic cells) [201, 202], and to a lesser extent in
endothelial cells, endocrine cells, peripheral nociceptive
neurons, and smooth muscle cells [203] in response to
noxious stimuli, cytokines, and tissue injury [197, 203].

CORT binds with a high affinity to different receptors,
mainly SSTR 1-5 [192, 204], ghrelin receptor (GHSR1)
[196, 197], and an unidentified selective CORT receptor
[198]. It shares several functions with SST [205], such as
suppression of nerve function and inhibition of cell
proliferation [196, 206]; however, it has other functions,
such as sleep induction, reduction of locomotor activity,
and deactivation of inflammatory/autoimmune responses
[196, 203, 206, 207]. Regarding adaptive immunity, CORT
acts on CD4 T-lymphocytes, participates in the inhibition
of differentiation and activation of Thl and Thl7
lymphocytes, and induces differentiation and activation of
Th2 and Treg lymphocytes. As for innate immunity, CORT
acts on macrophages/monocytes and participates in the
inhibition of proinflammatory mediators, such as CGRP
[205], TNF, IL-6, IL-12, IL-1, NO, GM-CSF, and CK, and
increases the levels of IL-10 [208, 209]; thus, exerting
anti-inflammatory effects. In contrast, its deficiency can
exacerbate inflammatory pain responses [197, 210].

Finally, CORT is capable of deactivating microglia and
astrocytes in an inflammatory environment [197, 211].
Activated glial cells play a critical role in the development
and maintenance of nociceptive responses, especially at
the spinal cord level [211]. Thus, CORT regulates
inflammation-induced pain  through deactivation,
particularly by preventing the development of chronic
pain. It also relieves hyperalgesia and allodynia and acts
as a neuroprotector and neuroregenerator [205].
Furthermore, CORT mRNA and protein are detected in
mature and newly developing odontoblasts. Thus, SSTR1
and CORT may have important functions in the regulation
of pulpal inflammation and communication between
odontoblasts and the nervous system [212] and may be
involved in antinociceptive processes at the pulpal level.
However, further studies are needed to confirm these
hypotheses in the dental pulp.

3.5.3. Galanin (GAL)

GAL, a neuropeptide widely distributed in the CNS and
PNS [213-216], is present in non-neuronal cells, such as
keratinocytes, sweat glands, macrophages, and blood
vessels [217]. It is expressed by immune cells during
inflammation in an attempt to restore homeostasis [218]
and exerts its physiological effects through three types of
GPCRs [216, 219], namely GalR1, GalR2, and GalR3 [216,
220-224]. Previous studies have suggested that GAL and
its receptors may be involved in the transmission and
modulation of nociceptive information in the nervous
system [225-230].

GAL has an antinociceptive effect [228, 231-235] via
activation of GalR1 [226, 236-238] and GalR3, which
causes neuronal hyperpolarization in response to
increased K* conductance [239], and also favors the
release of enkephalins and endorphins in the primary
afferent neurons that innervate the dental pulp [240]. The
immunoreactivity of GalR1 has been observed in the
axoplasm of unmyelinated nerve fibers (type C and A6) of
the dental pulp [241, 243]. However, it can induce
pronociceptive effects [224, 243] through the action of
GalR2 [226, 236-238, 244-246] and activation of
phospholipase C-protein kinase C pathway [247].
Nevertheless, the GAL action differs according to its
concentration, where the activation of GalR2 changes from
a Gq pathway (low GAL concentration) to a Gi/o-dependent
pathway (high GAL concentration); therefore, it changes
from a pro- to an antinociceptive-type signaling pathway
[248]. However, the latter has not yet been observed in
the dental pulp tissue.

3.5.4. Bombesin (BN)

The endogenous peptide, BN [249], and its
homologues, neuromedin B (NMB) and gastrin-releasing
peptide (GRP) are important neuromodulators in the brain
[250, 251]. They function through three subtypes of G
protein-coupled hepta-helical receptors, namely BB1, BB2,
and BB3. NMB and GRP show high affinity and serve as
endogenous ligands for BB1 and BB2 receptors,
respectively [250], whereas BN activates both receptors
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[251], and BB3 is an orphan receptor with low affinity for
all these peptides.

BN increases the presynaptic release of GABA by

facilitating the entry of extracellular Ca** [250], depola-
rizes GABAergic interneurons at the presynaptic level

through the inhibition of KIRs and K" conductance, and
increases the input resistance of interneurons. This
suggests that BN reduces the conductance of the neuronal
membrane [250]. Its antinociceptive action may be related
to the release of GABAergic interneurons.

A previous study [13] demonstrated the significantly
higher presence of specific GABA-like and BN/GRP-like
immunoreactivity in the pulps of asymptomatic carious
teeth than in normal teeth. Both peptides have been
implicated in antinociception [13] and have been reported
in TG neurons [252]. Their immunoreactivity has been
observed within the pulpal nerves and pulp fibroblasts
[13].

3.6. Specialized Pro-resolving Lipid Mediators
(SPMs): Lipoxins, Resolvins, Maresins, and
Protectins

The SPMs actively resolve inflammation to avoid the
development of a chronic condition [253]. These
endogenous lipid mediators act as immune response
modifiers and selectively modulate and reduce the host
response. They resolve inflammation [254] by clearing
debris and infectious agents, reducing pain, and restoring
the function of damaged tissues [255].

In contrast, several studies support the potent role of
SPMs in reducing the different types of pain, including
inflammatory and neuropathic pain [256-263], through
GPCRs and different downstream mechanisms, such as the
regulation of inflammatory mediators, TRP channels, and
central sensitization [264].

Studies with animal models indicate that SPMs can
reduce inflammatory, postoperative, and neuropathic pain
via immune, glial, and neuronal modulation [265].
Additionally, SPMs are produced in small amounts in vivo
(nano- or picograms), and thus, the doses used in
experimental studies are of equal magnitude [262, 266,
267]. Despite the low doses, the analgesic and anti-
inflammatory potency of SPMs is evident. Those doses are
not comparable with the milligrams or grams used with
analgesic agents, such as nonsteroidal anti-inflammatory
drugs or opioids [268, 269].

Furthermore, SPMs could potentially participate in the
asymptomatic nature of AIP via the resolution of
inflammation and their anti-inflammatory effects.
Nevertheless, such issues need to be clarified by well-
established pulpal pain models. However, technical
barriers pertaining to the instability, complex and delicate
physicochemical nature, and metabolic inactivation of
SPMs must be overcome [253].

3.7. Miscellaneous Mechanisms

Cabrera-Abad et al.

3.7.1. Bacteria and their Antinociceptive Effects

Inflammation-induced pain is an adaptive response
designed to protect the body from further injuries [270].
However, disease scenarios vary because some pathogens
can block, reduce, or modulate pain during the disease
cycle [271]. For instance, Porphyromonas gingivalis [270]
is associated with destructive periodontal disease [270,
272], dental caries [273], endodontic infections, and
odontogenic abscesses [274]. It exerts antinociceptive
effects [270], where its LPS increases the levels of the
potent anti-inflammatory cytokine IL-10 [270] and
stimulates the peptide derived from human telomerase
(GV1001) that has an anti-inflammatory effect without
affecting the cell viability in the human dental pulp, as it
allows for downregulating the expression of TNF-a and
IL-6 [272]. However, the antinociceptive role of this
bacterium has not yet been studied in AIP; thus, more
studies are required.

Metagenomic studies have revealed that the human
microbiome can generate many bioactive molecules,
including histamine, epinephrine, and GABA [275-277].
Therefore, the possible antinociceptive actions of bacteria,
such as Lactobacillus species [278, 279] (Lactobacillus
acidophilus NCFM), induce the expression of the
cannabinoid and p-opioid receptor in the intestinal
epithelial cells [280]. Whereas, Bifidobacterium species,
such as B. dentium, also produce GABA [281-283], making
neurons less likely to reach the threshold depolarization
level [283].

In contrast, M. ulcerans can secrete mycobacterial
polyketide mycolactone to induce analgesia by activating
angiotensin II type 2 receptors (AT2R) and inducing

hyperpolarization through activation of K* channels in
nociceptors [271, 284]. Additionally, in acute staphy-
lococcal infections [285], CGRP, GAL, and somatostatin
can suppress TNF-a release from S. aureus-stimulated or
heat-killed lipoteichoic acid macrophages. This indicates
that the presence of these bacterial agents may induce the
production of other substances that reduce inflammation
and have analgesic action.

Finally, in the dental pulp, LPS from bacteria
modulates the nociceptive activity through TLR4-mediated
sensitization of TRPV1 to nociceptors [286]. Moreover,
LPS could be detrimental if pathogenic factors suppress
nociception because they can evade host detection and
allow for the silent spread of infection.

3.7.2. Oxytocin (OXT)

OXT, a hormone and neuropeptide, induces
antinociception [287-290] and participates in the endogenous
opioid system [288]. At the TG level, the expression of OXT
receptors (OXTR) in the nociceptive neurons (small A-6
fibers) has been confirmed [289, 290], and their expression
increases during chronic inflammation [291]. Both OXT and
vasopressin (V1A) and their associated receptors, namely
OXTR and V1AR, respectively, induce analgesia in the sensory
neurons [292-295], possibly because the peripheral
antinociceptive action of vasopressin is due to an increase in
the function of the GABAA receptor, inhibition of the acid-
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sensitive ion channels [293, 296], and OXT by the direct
desensitization of TRPV1 [297]. Therefore, the analgesic
action may also be present in the dental pulp due to its
expression in the TG. However, this requires further
investigation.

3.7.3. Phoenixin

The neuropeptide, phoenixin, is expressed in the TG
sensory neurons that may not be associated with
antinociception in thermal pain models. However, phoenixin is
associated with antinociception in the visceral pain models
[298]. Phoenixin suppresses LPS-induced inflammation in the
dental pulp cells, and its anti-inflammatory effects have been
demonstrated by confirming the expression of its receptor,
GPR173, in the human pulp cells [299]. Further studies
should address its anti-inflammatory and potential analgesic
properties.

3.7.4. Opiorphin

Enkephalins have a stronger analgesic effect than
morphine, but this effect does not last because of the
degrading enzymes, such as neutral endopeptidase and
aminopeptidase-N [300]. Opiorphin is a peptide that acts as
an inhibitor of these enzymes, thus prolonging the effects of

Table 1. Potential factors involved in AIP.

enkephalins [300-302].

It is present in the blood, urine, semen, milk, tears,
and saliva, although its highest concentrations have been
observed in tears and saliva [303]. The more intense the
pain due to inflammation is, the more the salivary
opiorphin exists; however, its expression remains to be
evaluated in the pulp tissue.

3.7.5. Adipokines

Adipokines play multiple physiological and pathological
functions in the dental pulp, and some of them exert anti-
inflammatory activity, such as adiponectin and ghrelin [304];
therefore, both adipokines could reduce pain in AIP due to
their inherent anti-inflammatory activity. Although several
adipokines have recently been identified [305], only a few of
them have been studied in the pulp tissue [304]. Thus, their
potential involvement in pulp inflammation and pain warrants
further investigation.

Table 1 summarizes all the aforementioned factors
that are potentially involved in AIP, their ligands/receptors
identified in the dental pulp tissue and/or TG, and their
potential analgesic-related mechanisms.

Receptors Role

Identified in Identified in the

the Dental Pulp | Dental Pulp or
or TG TG

Ligands
Potential
Mechanism

Confirmed in
AIP-related
Analgesia

Potential Mechanisms Involved in the Painless Nature of AIP

Dental pulp [8, 10,

15, 27, 28, 58-60]. Dental pulp [9, 40]. No

Endogenous opioids

- Negative regulation of neurogenic inflammation [8].
- ORs up-regulation in late inflammatory stages, along with their axonal
transport to the periphery [9, 24, 32, 57].
- Peripheral analgesia by the up-regulated expression of ligands and/or
receptors [30-32].
- Anti-inflammatory effects [74].
- Pain modulation within the inflamed tissue by opioid peptides released
from the immune cells [21-24, 47, 48, 51, 52, 67-72, 80].
- High involvement of the peripheral opioid mechanisms as inflammation
advances [48, 51, 55, 56].

GIRK N/A TG [96]. No

Peripheral opioid-mediated analgesia [85, 87-89, 96].

Dental pulp [10,

Endogenous N/A 11, 130, 141-145, No
cannabinoids 149]

- Anti-inflammatory and analgesic effects [136, 145].
- GIRK activation reduces the release of neurotransmitters [106].
- Increased analgesia through biased signaling [127].
- CB1 inhibits the neurotransmitter release on nerve terminals and CB2
modulates cytokine release on immune cells [130].
- Inhibition of inflammatory pain by anti-inflammatory effects [151-154].
- Cross-talk between CBR and TRPV1 may provide pulpal analgesia [130,
132].

Dental pulp [12,
164]. No
TG [163].

GABA Dental pulp [11].

- GABA-mediated inhibitory neurotransmission [11, 12, 158, 159].
- 5-HT mediated GABAergic inhibition [167, 168].
- Hyperalgesia reduction by GABA peripheral analgesic effects [165].
- Blood flow regulation through inhibition of noradrenaline release in dental
pulp [160].

Neuropeptides

Somatostatin Dental pulp [10]. | Dental pulp [212]. No

- Anti-inflammatory neuropeptide that down-modulates a number of immune
functions [175, 193].
- Decreases the neurogenic inflammation [175, 193].
- Inhibits CGRP release from the trigeminal neurons [205].
- Exerts antinociceptive functions [179-182, 187, 188].
- Decreases the conductance of voltage-gated Ca®* channels [172, 183] and
activates K" channels [184-186].
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Ligands Receptors Role
Identified in Identified in the
the Dental Pulp | Dental Pulp or

or TG TG

Potential
Mechanism AIP-related

Analgesia

Confirmed in

Potential Mechanisms Involved in the Painless Nature of AIP

Cortistatin Dental pulp [212]. N/A No

- Potent anti-inflammatory effect [195, 204, 211] by regulating immune
tolerance 2009].
- Deactivation of inflammatory responses [196, 203, 206, 207].
- Decreases the presence/activation of Th1 and Th17 cells in the periphery
[211].
- Inhibits pro-inflammatory mediators (TNF, IL-6, IL-12, IL-1, NO, and GM-
CSF) and increases the levels of IL-10 [208, 209].

- Relieves hyperalgesia and allodynia and acts as a neuroprotector and
neuroregenerator [205].
- Analgesic effect in inflammatory [197] and neuropathic pain [210].
- Inhibits the CGRP release from the trigeminal neurons [205].
- Depresses the neuronal electrical activity [206].- Relieves hyperalgesia and
allodynia and acts as a neuroprotector and neuroregenerator [205].
- Analgesic effect in inflammatory [197] and neuropathic pain [210].
- Inhibits the CGRP release from the trigeminal neurons [205].
- Depresses the neuronal electrical activity [206].

Dental pulp [212].
TG [245].

Dental pulp [241].

Galanin TG [241, 245].

- Antinociceptive effect [225-235, 240].
- Opioid systems are involved in the galanin-induced antinociception [240].

Dental pulp [13].

Bombesin TG [252].

N/A No

- Antinociceptive effect [13].
- Depolarizes GABAergic interneurons at the presynaptic level and reduces
the conductance of the neuronal membrane [250].

Specialized pro-resolving lipid mediators (SPMs)

Lipoxins N/A N/A No

- Potent pro-resolving and anti-inflammatory effects and analgesic action
[264, 265].

Resolvins N/A N/A No

- Potent pro-resolving and anti-inflammatory effects and analgesic action
[264, 265].
- Analgesic effect in inflammatory pain [259, 260, 262, 269].
- Potent inhibition of TRP channels [261].

Maresins N/A N/A No

- Potent pro-resolving and anti-inflammatory effects and analgesic action
[264, 265].

Protectins N/A N/A No

- Potent pro-resolving and anti-inflammatory effects and analgesic action
[264, 265].

Miscellaneous mechanisms

Antinociceptive

bacteria No

-Porphyromonas gingivalis LPS exerts antinociceptive effects via an
increase in IL-10 levels [270].
-Bifidobacterium species, such as B. dentium, produce GABA [281-283].

Oxytocin TG [290]. TG [290-292]. No

- Induces membrane hyperpolarization in pain-sensitive dorsal root ganglia
neurons [287].
- Antinociceptive effect [287-290].
- Inhibits the activity of acid-sensing ion channels [293].
- Suppresses nociception of inflammatory pain via TRPV1-desensitization
[297].

Phoenixin TG [298]. Dental pulp [299]. No

- Suppresses the lipopolysaccharide-induced inflammation in dental pulp
cells, suppressing the release of pro-inflammatory cytokines and
inflammatory mediators [299].

Opiorphin N/A N/A No

- Protects enkephalins from degradation and activates restricted opioid
pathways specifically involved in pain control [300-303].

Adipokines Dental pulp [304]. | Dental pulp [304]. No

Some exert anti-inflammatory
effects by inducing the secretion of
anti-inflammatory interleukins or inhibiting the production of
proinflammatory
cytokines [304].

N/A: not available information.

CONCLUSION

This review presents up-to-date information on the
painless nature of AIP. Factors that could potentially be
involved in the mechanisms of analgesia underlying AIP
include endogenous opioids, GIRK channels, endogenous
cannabinoids, GABA, neuropeptides (somatostatin,
cortistatin, galanin, and bombesin), and SPMs (lipoxins,
resolvins, and maresins). We have also identified some
miscellaneous factors that could play a role in AIP, such as
bacteria with their antinociceptive effects, oxytocin,

phoenixin, opiorphin, and adipokines, considering their
potential analgesic-related mechanisms.

Nevertheless, the precise mechanisms responsible for
the lack of symptoms in AIP remain to be elucidated, and
further research is warranted despite the recent advances in
science and technology. The available literature mainly
investigated symptomatic irreversible pulpitis (SIP), where a
recent study determined the levels of inflammation,
oxidative stress, and extracellular matrix degradation
biomarkers in SIP [305, 306]. Thus, it is compelling to
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perform a similar biochemical mapping for AIP that helps
elucidate the expression pattern of endogenous analgesic
biomolecules. Furthermore, vascular, neural, cellular, and
biochemical changes can occur without pain (8).

Moreover, it is important to highlight the chronic nature
of AIP. In this regard, systemic chronic inflammation
constitutes a health-damaging phenotype that is triggered
by damage-associated molecular patterns, is persistent (non-
resolving), has low-grade magnitude, leads to collateral
damage, is age-related, and is silent (has no canonical
standard biomarkers) [307]. The influence of these factors
should be investigated to collect data concerning the
analgesic features and pathophysiology of AIP in the context
of the local microenvironment of the pulp tissue.

Furthermore, multiplatform data-integration models have
been used to identify the differentially expressed genes to
analyze the molecular mechanisms underlying pulpitis [308,
309]. Thus, they could improve our current understanding of
the nature of AIP. Genetic and epigenetic characterization of
pulpal inflammation can also help decipher the balance
between proinflammatory and anti-inflammatory gene
expression in AIP [310] and how it influences analgesia. This
is especially relevant as several genes known to modulate
pain and inflammation show a higher level of differential
expression in patients with asymptomatic and mild pain
compared to those with moderate to severe pain [311].

Regarding the limitations of this review, it must be
highlighted that most studies were performed on animals,
and AIP could not be differentiated from SIP. Furthermore,
our search was confined to two electronic databases,
potentially limiting the inclusion of relevant literature in our
review. Despite these limitations, our study possesses
notable strengths. We have meticulously compiled a
substantial amount of data, contributing to an updated
narrative review that delves into the potential mechanisms
behind the asymptomatic nature of AIP. Notably, the latest
report on the fundamentals of the painless nature of AIP
describes a clinical study that was performed two decades
ago [16]. Additionally, our findings could offer valuable
insights for designing new studies aimed at identifying the
precise molecular mechanisms responsible for the absence
of symptoms in AIP.

Although the present review enlists some candidate
ligands and/or receptors that potentially regulate the
asymptomatic nature of AIP, no direct evidence supports
these statements (Table 1). Indeed, the literature regarding
this topic is scarce. However, paradoxically, patients with
dental diseases are diagnosed with AIP daily worldwide.
Therefore, understanding the analgesia and biology behind
AIP is necessary and could help improve the clinical
diagnosis of pulp pathology, especially since recent
investigations have shown a good correlation between the
clinical symptoms of pulpitis and histological findings [312].
On the other hand, anecdotal reports among dentists
confirm that in some AIP cases that may have had trauma or
deep caries, the inflamed pulp tissue is open to the oral
cavity. This would mean no or little increase in pulpal tissue
pressure is induced, which is thought to be involved in the
“asymptomatic” AIP condition. However, this assumption is
very simplistic in explaining the potential biological
fundamentals behind AIP.

Finally, other dental and medical pathologies share
asymptomatic characteristics similar to those of AIP. These
include symptomless pericoronitis [313, 314], chronic
periodontitis [315], asymptomatic apical periodontitis
[316-318], congenital painlessness disorders [319-321],
painless neuropathies [322], NGF mutations [323], Buruli
ulcer [324], and painless chronic pancreatitis [325-327].
Hence, analyzing the cellular, biochemical, and/or clinical
findings from these conditions could help enhance our
understanding of the possible mechanisms underlying the
asymptomatic nature of AIP.

LIST OF ABBREVIATIONS

BN = Bombesin

CBRs = Cannabinoid Receptors
CORT = Cortistatin

EOP = Endogenous Opioid Peptides
FAAH = Fatty Acid Amide Hydrolase
GABA = Gamma-aminobutyric Acid

GAL = Galanin
GIRK = G Protein-activated Inwardly Rectifying K+
Channels

NADA = N-arachidonoyl-dopamine

NOR = Nociceptin/orphanin Receptor

OXT = Oxytocin

OX1Rs = Orexin 1 Receptors

SPMs = Specialized Pro-resolving Lipid Mediators
SST = Somatostatin

TRPV1 = Transient Receptor Potential Vanilloid Subtype
1 Channel

VvIPAG = Ventrolateral Periaqueductal Gray Matter
2-AG = 2-arachidonylglycerol
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