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Abstract:
Background: Considering the extensive innervation of the pulp tissue, asymptomatic irreversible pulpitis (AIP) or
“silent pulpitis” represents a confounding clinical condition. Previous studies have attributed the painless nature of
AIP  to  the  inhibition  of  pulpal  nociceptors  by  local  endogenous  analgesics.  However,  there  is  a  lack  of  recent
information concerning its painless nature, and paradoxically, patients with dental pain are diagnosed with AIP daily
worldwide. In addition, no recent review has explored the potential AIP-related mechanisms.

Objective:  This  narrative  review  aims  to  explore  and  update  the  potential  mechanisms  involved  in  the  painless
nature of AIP to improve our current understanding of the asymptomatic character of this clinical condition.

Methods:  An  electronic  search  was  performed  in  the  PubMed  and  Scopus  databases,  using  as  search  terms
“asymptomatic  irreversible  pulpitis,”  “dental  pulp,”  “endogenous  opioids,”  “endogenous  cannabinoids,”
“somatostatin,”  “GABA,”  “bombesin,”  “cortistatin,”  “galanin,”  and  “specialized  pro-resolving  lipid  mediators.”

Results:  Endogenous  opioids,  G  protein-activated  inwardly  rectifying  K+  channels,  endogenous  cannabinoids,  γ-
aminobutyric acid, and neuropeptides (i.e. somatostatin, cortistatin, galanin, and bombesin) could be involved in AIP-
related analgesia. Additionally, specialized pro-resolving lipid mediators, such as lipoxins, resolvins, maresins, and
protectins, as well as oxytocin, phoenixin, opiorphin, and adipokines, could also be involved in this clinical condition.

Conclusion: This  narrative review provides updated information on the potentially  involved mechanisms in AIP.
Nevertheless,  the precise  mechanisms responsible  for  the lack of  symptoms in  AIP remain to  be elucidated,  and
further research is warranted.

Keywords:  Asymptomatic  irreversible  pulpitis,  Analgesia,  Endogenous  opioids,  Endogenous  cannabinoids,
Neuropeptides,  Phoenixin.

© 2024 The Author(s). Published by Bentham Open.
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public
License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are
credited.

*Address correspondence to this author at the Department of Endodontics, Faculty of Dentistry, University of Cuenca,
010107 Cuenca, Ecuador; E-mail: jose.alvarezv@ucuenca.edu.ec

Cite as: Cabrera-Abad D, Jara-Vergara V, Álvarez-Vásquez J. Exploring the Painless Nature and Potential Mechanisms of
Asymptomatic Irreversible Pulpitis: A Narrative Review . Open Dent J, 2024; 18: e18742106281444.
http://dx.doi.org/10.2174/0118742106281444240219050149

Received: September 09, 2023
Revised: December 29, 2023
Accepted: January 25, 2024

Send Orders for Reprints to
reprints@benthamscience.net

1. INTRODUCTION
The  dental  pulp  is  a  highly  vascularized,  innervated

connective tissue that  provides vitality  and sensitivity  to
teeth  [1,  2].  This  tissue  experiences  inflammatory
reactions in response to dental caries, restorative proce-

dures,  dental  trauma,  and periodontal  disease  [3]  — the
first  being  the  main  threat  to  dental  pulp  [4].  However,
pulpitis  is  the  most  common  inflammatory  disease  in
humans and other mammals [5] that can be reversible or
irreversible.  Irreversible  pulpitis  can  be  symptomatic  or
asymptomatic [6].
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Considering  the  extensive  nerve  plexus  of  the  pulp
tissue, asymptomatic irreversible pulpitis (AIP) or “silent
pulpitis”  is  a  confounding clinical  condition [7].  Patients
do not experience pain (6) despite inherent inflammatory
processes  in  the  affected  tooth.  Several  studies  have
identified  local  analgesic  agents  in  the  dental  pulp,
including  endogenous  opioids  [8-10],  cannabinoids  [11,
12],  gamma-aminobutyric  acid  (GABA)  [13,  14],  and
somatostatin  [10,  15].  These  agents  could  inhibit  pulpal
nociceptors and may be responsible for the asymptomatic
nature of AIP [7].

Despite  these  studies  investigating  the  dental  pulp,
there is a lack of updated literature reviews that explore
the  factors  involved  in  the  asymptomatic  nature  of  AIP,
and  the  most  recent  foundational  study  on  the  painless
nature  of  AIP  dates  back  two  decades  [16].  Moreover,
patients with dental diseases are diagnosed with AIP on a
daily  basis  worldwide.  Therefore,  this  narrative  review
aimed to compile updated information on potential factors
involved in the mechanisms of analgesia underlying AIP to
improve our current understanding of its painless nature
and to provide insights for future studies elucidating the
precise  mechanisms  underlying  the  lack  of  symptoms  in
AIP.

2. MATERIAL AND METHODS
We  searched  the  available  literature  in  the  PubMed

and  Scopus  databases  to  identify  relevant  articles
published  up  to  January  25,  2022,  describing  the
expression  of  ligands  and/or  receptors  or  other  factors
that potentially regulate the asymptomatic nature of AIP.
The  following  search  terms  were  used:  “asymptomatic
irreversible pulpitis,” “dental pulp,” “endogenous opioids,”
“endogenous  cannabinoids,”  “somatostatin,”  “GABA,”
“bombesin,” “cortistatin,” “galanin,” and “specialized pro-
resolving  lipid  mediators.”  Only  articles  published  in
English  were  included  in  the  present  study.  The  search
was  limited  to  clinical  trials,  in  vitro  studies,  literature
reviews,  systematic  reviews,  and  textbook  chapters.
Interim  reports,  abstracts  only,  letters,  brief
communications,  studies  that  did  not  focus  on  the
asymptomatic  nature  of  AIP,  and  duplicated  works  were
excluded.  Subsequently,  the  titles  and  abstracts  of
relevant articles were reviewed,  and a manual  search of
the references of each selected article was performed to
complement  the  electronic  search.  Further,  endodontic
journals  were  examined  to  identify  relevant  articles  “in
press” or in “early view” status.

3. POTENTIAL FACTORS INVOLVED IN ANALGESIA
DURING AIP

Factors  that  could  potentially  be  involved  in  the
mechanisms  of  analgesia  underlying  AIP  include
endogenous  opioids,  G  protein-activated  inwardly
rectifying K+ channels (GIRK), endogenous cannabinoids,
γ-aminobutyric acid (GABA), neuropeptides (somatostatin,
cortistatin,  galanin,  and  bombesin),  and  specialized  pro-
resolving  lipid  mediators  (i.e.  lipoxins,  resolvins,  and
maresins).  We  also  included  a  section  on  miscellaneous

factors that could potentially be involved in AIP, such as
bacteria  and  their  antinociceptive  effects,  oxytocin,
phoenixin, opiorphin, and adipokines. All but bacteria are
endogenous  biomolecules  potentially  involved  in  the
painless  nature  of  AIP.  The  ligands/receptors  of  these
biomolecules  have  already  been  identified  in  the  dental
pulp tissue and/or the trigeminal ganglion (TG). However,
in some cases, information is not yet available (Table 1).

3.1. Endogenous Opioids
The  opioid  system  functions  as  an  endogenous

mechanism  of  antinociception  through  three  pathways:
inhibition of nociceptors at the supraspinal level, inhibition
of nociceptors at the level of the dorsal horn of the spinal
cord, and activation of the descending inhibitory pathways
[15]. This system is distributed in both the central nervous
system  (CNS)  and  peripheral  nervous  system  (PNS)
[17-20].  It  is  comprised  of  endogenous  opioid  peptides
(EOP)  (i.e.,  enkephalins,  dynorphins,  β-endorphins,  and
nociceptin/orphanin  FQ)  [17]  released  by  T-  and  B-
lymphocytes, monocytes, macrophages, and granulocytes
[21-24]; and opioid receptors (OR) that are located in the
nerve endings of the primary afferent fibers [25, 26]. Met-
enkephalins,  dynorphins,  and  β-endorphins  have  been
found  in  the  dental  pulp  [10,  27,  28];  however,  the
presence  of  nociceptin/orphanin  has  not  yet  been
demonstrated.

The receptors found in the afferent sensory nerves are
μ (MOR), δ (DOR), and κ (KOR) [17, 23, 29-32], along with
the nociceptin/orphanin receptor (NOR), also known as the
orphan opioid receptor-like receptor (ORL) [17, 33]. ORs,
especially  DOR,  are  involved  in  neuroprotection  against
hypoxia  or  ischemia  [34-37].  They  also  inhibit  voltage-
gated  Ca2+  channels  [38],  reduce  the  release  of  neuro-
transmitters  [17],  and  allow  neuronal  hyperpolarization
that  is  mediated  by  K+  channels  [39].  The  presence  of
MOR  [9]  and  DOR  [40]  in  the  dental  pulp  has  been
confirmed; however, the KOR expression has not yet been
demonstrated.

Under normal conditions, the ORs are inaccessible due
to the perineural barrier [41-43]; however, this is altered
in  initial  inflammatory  conditions  that  allow  for  the
passage  of  ligands  to  their  receptors  [30].  In  late
inflammatory stages, the number of ORs increases, along
with  their  axonal  transport  to  the  periphery  [9,  24]  and
sprouting  of  new  nerve  endings  [44,  45]  that  would
explain  the  opioid  analgesic  activity  in  inflamed  dental
pulps [9].  In these states, β-endorphins become unstable
due  to  their  rapid  metabolism;  therefore,  the  resulting
analgesia could be induced by their fragments after their
biotransformation  [46].  In  contrast,  a  previous  study
showed that antinociception failed to increase despite the
increased  leukocyte  recruitment,  which  could  be
attributed  to  the  low  amount  of  ORs  in  the  early
inflammatory  stage  [47].  The  duration  of  inflammation
could  be  a  decisive  factor  in  terms  of  the  analgesic
capacity  of  the  endogenous  opioid  system,  such  that  in
both  types  of  irreversible  pulpitis  (symptomatic  and
asymptomatic),  an  inflammatory  process  is  established;
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however,  pain  is  absent  in  the  latter  scenario.  In
endogenous  analgesia,  the  number  of  leukocytes,  ORs,
duration  of  inflammation,  and  binding  efficiency  of  ORs
with  G-protein  in  neurons  interact  in  a  simultaneous
manner  [45,  48,  49].

Central  and  peripheral  ORs  interact  in  the  initial
inflammatory  stages  [47,  50-52];  however,  in  the  late
stages,  only  peripheral  ORs  function  [23,  53,  54],
demonstrating  high  participation  of  peripheral  opioid
mechanisms as inflammation advances and becomes more
severe  [48,  51,  55,  56].  Moreover,  during  chronic
inflammation, at the central level, changes in the ORs are
not  observed,  but  the  levels  of  EOP  increase  [32].
Therefore,  further studies are required to determine the
differences  in  central  responses  that  occur  at  different
times and in different types of dental injuries [57].

Bradykinin  stimulation  [58],  orthodontic  movements
[59], and cavity preparation [60] increase the EOP levels
in the dental pulp [15, 55, 61]. Moreover, other substances
exert an antinociceptive effect as a secondary function by
stimulating the release of EOPs in a similar manner to the
effects  exerted  by  substance  P  (SP)  whose  N-terminal
fragment  acts  as  a  ligand  for  MOR  [62,  63],  calcitonin
gene-related  peptide  (CGRP)  that  suppresses  IL-2
production  [64],  and  IL-4  that  promotes  change  in  the
phenotype of macrophages from M1 to M2 and stimulates
M2 to  produce  EOP in  injured  nerves  [65].  Additionally,
interleukin 1β (IL-1β), corticotropin-releasing factor (CRF)
[66], norepinephrine, and CXCL2/3 stimulate the release
of  EOP  by  leukocytes  [21,  50,  67-72],  and  thus,  exert  a
peripheral  analgesic  effect  [50,  69-71,  73].  Moreover,
some  opioid  agonists  exert  anti-inflammatory  effects,
probably  involving  ORs  on  immune  cells  [74].

In  contrast,  M2  macrophages  can  help  in  resolving
inflammatory  pain  by  transferring  their  mitochondria  to
the  neurons  of  the  dorsal  root  ganglion  (DRG)  and
stimulating  the  switch  from  neuronal  glycolytic
metabolism to more oxidative metabolism, which in turn
regulates  the  neuronal  activity  and  allows  for  the
resolution  of  inflammatory  pain  away  from  the
inflammation site  [75].  An increase in  the M2 levels  has
been observed in the TG as pulpitis progresses, showing
anti-inflammatory  effects  [76].  Moreover,  this  analgesic
effect could be attributed to the secretion of IL-10 because
of its anti-inflammatory action [77-81] and a reduction in
the  expression  of  voltage-gated  sodium  channels  and  a
number  of  currents  sensitive  to  tetrodotoxin  [82].
However, the resolution of inflammation is insufficient to
resolve the pain [80].

3.2. GIRK
GIRK are G protein-activated effector ion channels [83]

that participate in opioid-mediated antinociception in the
CNS  and  PNS  via  hyperpolarization  of  the  neuronal
membrane,  which  in  turn  inhibits  the  propagation  of
action  potentials  [84-90].  At  the  spinal  cord  level,  these
receptors contribute to the analgesic effects of MOR and
DOR  but  not  those  of  KOR  [88].  Furthermore,  GIRK
channels  are  crucial  for  galanin  action,  as  GalR1  and

GalR3  open  the  K+  channels.  For  neuropeptide  Y,  which
presynaptically  depresses  the  miniature  excitatory
synaptic  currents  through the  Y2  receptor,  somatostatin
activates the GIRK channels of SST4 receptors [91-95].

The GIRK 1 and 2 receptors are expressed in the TG
neurons, thus contributing to peripheral opioid analgesia
in the craniofacial region [96]. Therefore, these channels
could be present in the dental pulp; however, to date, no
study has confirmed this hypothesis.

3.3. Endogenous Cannabinoids
The  endogenous  opioid  and  cannabinoid  systems  are

involved  in  antinociception  through  different  pathways
[97-104].  Moreover,  they  activate  the  G-protein-coupled
receptors  (GPCR)  and  can  interact  either  directly
(receptor heteromerization) or indirectly (cross-signaling)
[97,  98,  105].  Moreover,  cannabinoid  receptors  (CBRs)
activate  GIRK,  which  in  turn  reduces  the  release  of
neurotransmitters  in  the  opioid  system  [106].  The
endocannabinoid system has receptors (CB1R and CB2R),
endogenous  ligands  (anandamide  and  2-
arachidonylglycerol),  and  enzymes  that  degrade  and
synthesize the latter, performing functions at the central
and peripheral levels [107, 108]. This system is expressed
in  both  the  ascending  and  descending  pain  pathways,
producing antinociception at the supraspinal, spinal, and
peripheral  levels  [102,  109-112].  Additionally,
lipopolysaccharides  (LPS)  increase  the  levels  of
anandamide  and  inhibit  the  enzyme  fatty  acid  amide
hydrolase (FAAH) in the lymphocytes [113], and increase
the  levels  of  2-arachidonylglycerol  (2-AG)  in  the
macrophages  and  platelets  [114].

CB1R and CB2R are mainly expressed in the nervous
and immune systems, respectively [115-119], and the cells
of these systems secrete endocannabinoids [23, 120, 121].
CB1Rs  have  been  identified  in  various  areas  related  to
pain in the CNS, where they regulate signals from neurons
originating from the nociceptive regions of the spinal cord,
producing  antinociception  [110-112,  118].  CB1R  of  the
ventrolateral  periaqueductal  gray matter  (vlPAG) aids in
modulating  the  nociceptive  signals  from  the  TG  nerve,
specifically  in  capsaicin-induced  pulpal  pain  [122].  The
exact mechanism of this modulation is unclear; however,
CB1R in the PAG interacts with other systems to modulate
the  nociceptive  signals  [123,  124],  such  as  orexin  1
receptors  (OX1Rs).  When  activated,  these  receptors
induce the release of 2-AG, which inhibits the release of
GABA  through  the  pre-synaptic  CB1R—a  phenomenon
known  as  disinhibition  [123].  Tonic  inhibition  of
GABAergic  transmission  activates  the  vlPAG;  thus,
activating the descending pain inhibition pathway [125].
This demonstrates the antinociceptive effects of orexin-A
on  the  vlPAG  and  its  relationship  with  the
endocannabinoid  system  [123].

The CBR signaling pathway acts through the inhibition
of  cyclic-AMP  formation  and  modulation  of  Ca2+  and  K+

channels  [126].  Different  ligands  differentially  activate
these  signaling  pathways  through  CB1R  and  CB2R—
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which  is  termed  the  “biased  signaling”  [127].  Further
studies  at  the  pulp  level  are  suggested  as  this  signaling
may preferentially provide higher analgesia. Additionally,
the molecular mechanisms underlying the antinociceptive
and antihyperalgesic effects of CBRs remain unclear [115].
Endocannabinoids,  such  as  anandamide,  2-AG,  and  the
other  less-studied  subtypes,  including  N-arachidonoyl-
dopamine  (NADA),  noladin  ether,  and  virodhamine,
interact with receptors other than CB1R and CB2R [105,
128, 129].

In  contrast,  transient  receptor  potential  vanilloid
subtype 1 channels (TRPV1) are activated by anandamide
and NADA and are co-expressed with CB1R and CB2R in
some tissues, including the dental pulp [128, 130]. This co-
expression or “cross-talk” between CBR and TRPV1 may
be  relevant  in  pulpal  analgesia.  It  has  long  been  known
that  only  CBRs  attenuate  and  TRPV1  increases
nociception.  However,  studies  have  shown  that  TRPV1
activation  potentiates  the  supraspinal  pain  inhibitory
pathways,  and  desensitization  of  TRPV1  produces
analgesia [131, 132]. Pre- and post-synaptic activation of
TRPV1 or pre-synaptic activation of CB1R stimulates the
output  excitatory  neurons  through  glutamate  release  or
disinhibition  of  GABA  tonic  control,  respectively,  at  the
vlPAG level. This leads to glutamate release in the rostral
ventromedial  medulla  (RVM)  and  activation  of  the  “off”
neurons  in  this  area,  with  a  subsequent  antinociception
[133,  134].  However,  further  studies  are  required  to
analyze  the  factors  that  activate  these  pathways.

TRP channels also induce peripheral antihyperalgesia
and antinociception [135, 136]. However, their mechanism
of  action  is  complex,  as  they  generate  incoming  ionic
currents  more  associated  with  nociception.  Partial
activation of these channels may not necessarily generate
neuronal  excitation  [137-139].  The  incoming  currents
could  fail  to  reach  threshold  levels  to  excite  the
nociceptors, or the slow depolarization of the membrane
potential may inactivate these channels [140].

CB1R  and  CB2R  expression  in  the  dental  pulp  of
humans  and rats  has  been previously  demonstrated  [10,
11, 130, 141-143]. CB2R is expressed in the human pulp
cells [130, 142] and myofascial fibroblasts [144], whereas
CB1R  is  preferentially  expressed  in  odontoblasts,
odontoblast-like  cells,  and  pulpal  nerve  fibers  [11,  145].
Although the expression of  CBRs has not  been shown in
dental  pulp  fibroblasts,  it  has  been  reported  that
fibroblasts  have  the  necessary  enzymes  to  produce
endocannabinoids  and  act  in  an  autocrine  or  paracrine
way when interacting with leukocytes [144, 146, 147]. A
previous  study  showed  that  there  were  no  statistically
significant differences in the expression of CB1R between
painful and non-painful dental pulps [11].

In  contrast,  CB1R  may  be  activated  by  stretching  in
the  absence  of  a  ligand  [119],  wherein  hydrostatic
pressure  may  directly  activate  OR  and  CBR,  releasing
endorphins and endocannabinoids,  as  has been reported
at the PAG level [148]. In the dental pulp, an increase in
pressure  during  an  inflammatory  process  may  activate
these  receptors,  although  this  remains  to  be  explored.

However,  the role of  CB2Rs and their agonists has been
investigated in pulpal antinociception [149] and in animal
models of acute, chronic, and neuropathic pain [150].

CB2R agonists can inhibit inflammatory pain through
their anti-inflammatory effects [151, 152]. Moreover, the
expression  of  cytokines  and  CBR  have  a  reciprocal
regulatory  relationship.  Thus,  the  activation  of  these
receptors  in  macrophages  inhibits  the  production  of
proinflammatory cytokines [153], thus allowing the change
from  immune  responses  mediated  by  Th1
(proinflammatory) to Th2 (anti-inflammatory) through the
CB2R  [154].  Moreover,  IL-4  increases  the  CB1R
expression  in  leukocytes  [155],  and  IFN-γ  and  IL-12
reduce  the  FAAH  activity  [113].  Taken  together,  the
increase  in  CBR  expression  by  cytokines  could  be  a
mechanism  of  autoregulation  of  inflammation  [156].

3.4. GABA
GABA neurotransmitter plays a primary inhibitory role

in  the  CNS  and  PNS  [157-161].  When  released  at  the
neuronal  synapses,  it  activates  different  classes  of
receptors  or  returns  to  the  nerve  terminals  via  a  Na+-
dependent  transporter  [158-160].  Ionotropic  receptors
(GABAA  and  GABAC)  participate  in  rapid  synaptic
transmission and modulate neuronal activity by gating the
chloride  ions  [13,  159],  hyperpolarizing  the  neuronal
membranes,  and  inhibiting  the  propagation  of  action
potentials,  leading  to  short-term,  fast-acting  inhibitory
currents  [157,  160].  In  contrast,  the  slow-acting
metabotropic  receptors  (GABAB)  belong  to  the  GPCR
superfamily  and  exert  inhibitory  actions  through  the
inhibition  of  voltage-gated  Ca2+  channels  and  GIRK
activation [162-167]. These receptors have been found in
the  dental  pulp  tissue  [13]  and  TG  [163].  Furthermore,
GABAergic neurons are activated at the trigeminal nuclear
complex during tooth pulp stimulation [161].

However,  inflammation,  necrosis,  or  areas  of  pulpal
hypoxia  can  increase  the  GABA  levels  above  the  nominal
levels at rest, which may explain the absence of symptoms in
these pulps [12,  13].  Neuroinflammation can be modulated
by  GABAergic  signaling  [157],  as  GABAB  receptors  are
involved in pain management and analgesia; thus, GABA and
GABAB  receptors  present  in  the  human  pulp  may  also  be
involved [164]. The clinical importance of peripheral GABAB

receptors may be related to the peripheral analgesic effects
of  GABAB  agonists  that  modulate or  attenuated nociceptive
behavior  in  the  animal  models  of  pain  [165].  In  a  previous
study  [166],  isovaline,  baclofen,  and  GABA  attenuated
allodynia  induced  by  prostaglandin  E2  injection.  Another
study  revealed  that  baclofen  suppressed  pain  in  small-
diameter  TG  neurons  in  rats  [162].

In  contrast,  GABAergic  interneurons  mediate  the
endogenous  release  of  5-hydroxytryptamine  (5-HT).  The  5-
HT3 receptors are involved in antinociceptive effects  [167]
that  are  attenuated  by  the  opioid  antagonist  naloxone,
suggesting  that  these  neurons  may  be  associated  with
endogenous  opioids  [168].



Exploring the Painless Nature and Potential Mechanisms of Asymptomatic Irreversible Pulpitis 5

3.5.  Neuropeptides:  Somatostatin,  Cortistatin,
Galanin, and Bombesin

Neuropeptides play a major role in the perception of
pain [169],  but some can mediate analgesic mechanisms
[170]. In this section, we describe the potential analgesic
roles of somatostatin, cortistatin, galanin, and bombesin in
AIP.

3.5.1. Somatostatin (SST)
SST  is  a  peptide  hormone  [171-173]  that  is  widely

distributed in the CNS and peripheral tissues [171, 174]
and  is  produced  by  neurons  and  neuroendocrine,
inflammatory,  and  immune  cells  in  response  to  ions,
nutrients,  neuropeptides,  neurotransmitters,  hormones,
growth  factors,  cytokines  [173],  and  noxious  heat  or
chemical  stimuli  [175].  There  are  two  SST  isoforms,
SST-14  and  SST-28,  that  differ  in  the  number  of  amino
acids [175-177] and five GPCR-type receptors (SSTR 1–5)
[178].

SST  performs  antinociceptive  functions  [179-182]  by
affecting  neurotransmission  through  its  receptors,
decreasing  the  conductance  of  voltage-gated  Ca2+

channels [172, 183], and activating K+ channels [184-186].
SST decreases  neurogenic  inflammation  [175]  due to  its
inhibitory action [175, 187, 188] by decreasing the release
of IFN-γ, reactive oxygen species, CGRP [175], SP [189],
and  immunoglobulins  from B-cells  [190].  Moreover,  SST
can regulate the pulpal blood flow [191] as the peptidergic
nerves  containing  SST  are  distributed  near  the  blood
vessels  [10,  192-194].

3.5.2. Cortistatin (CORT)
CORT,  a  cyclic  neuropeptide,  is  predominantly

expressed  in  the  cerebral  cortex  [195-197],  spinal  cord
neurons,  GABAergic  inhibitory  interneurons  [198-200],
immune cells (lymphocytes, monocytes, macrophages, and
dendritic  cells)  [201,  202],  and  to  a  lesser  extent  in
endothelial  cells,  endocrine  cells,  peripheral  nociceptive
neurons,  and  smooth  muscle  cells  [203]  in  response  to
noxious stimuli, cytokines, and tissue injury [197, 203].

CORT binds with a high affinity to different receptors,
mainly  SSTR  1–5  [192,  204],  ghrelin  receptor  (GHSR1)
[196,  197],  and  an  unidentified  selective  CORT receptor
[198]. It shares several functions with SST [205], such as
suppression  of  nerve  function  and  inhibition  of  cell
proliferation [196, 206]; however, it  has other functions,
such  as  sleep  induction,  reduction  of  locomotor  activity,
and  deactivation  of  inflammatory/autoimmune  responses
[196, 203, 206, 207]. Regarding adaptive immunity, CORT
acts on CD4 T-lymphocytes, participates in the inhibition
of  differentiation  and  activation  of  Th1  and  Th17
lymphocytes, and induces differentiation and activation of
Th2 and Treg lymphocytes. As for innate immunity, CORT
acts  on  macrophages/monocytes  and  participates  in  the
inhibition  of  proinflammatory  mediators,  such  as  CGRP
[205],  TNF,  IL-6,  IL-12,  IL-1,  NO,  GM-CSF,  and CK,  and
increases  the  levels  of  IL-10  [208,  209];  thus,  exerting
anti-inflammatory  effects.  In  contrast,  its  deficiency  can
exacerbate inflammatory pain responses [197, 210].

Finally, CORT is capable of deactivating microglia and
astrocytes  in  an  inflammatory  environment  [197,  211].
Activated glial cells play a critical role in the development
and  maintenance  of  nociceptive  responses,  especially  at
the  spinal  cord  level  [211].  Thus,  CORT  regulates
inflammation-induced  pain  through  deactivation,
particularly  by  preventing  the  development  of  chronic
pain. It also relieves hyperalgesia and allodynia and acts
as  a  neuroprotector  and  neuroregenerator  [205].
Furthermore,  CORT  mRNA  and  protein  are  detected  in
mature and newly developing odontoblasts. Thus, SSTR1
and CORT may have important functions in the regulation
of  pulpal  inflammation  and  communication  between
odontoblasts  and  the  nervous  system  [212]  and  may  be
involved in antinociceptive processes at the pulpal level.
However,  further  studies  are  needed  to  confirm  these
hypotheses  in  the  dental  pulp.

3.5.3. Galanin (GAL)
GAL, a neuropeptide widely distributed in the CNS and

PNS [213-216],  is  present in non-neuronal  cells,  such as
keratinocytes,  sweat  glands,  macrophages,  and  blood
vessels  [217].  It  is  expressed  by  immune  cells  during
inflammation in an attempt to restore homeostasis [218]
and exerts its physiological effects through three types of
GPCRs [216, 219], namely GalR1, GalR2, and GalR3 [216,
220-224]. Previous studies have suggested that GAL and
its  receptors  may  be  involved  in  the  transmission  and
modulation  of  nociceptive  information  in  the  nervous
system  [225-230].

GAL has  an  antinociceptive  effect  [228,  231-235]  via
activation  of  GalR1  [226,  236-238]  and  GalR3,  which
causes  neuronal  hyperpolarization  in  response  to
increased  K+  conductance  [239],  and  also  favors  the
release  of  enkephalins  and  endorphins  in  the  primary
afferent neurons that innervate the dental pulp [240]. The
immunoreactivity  of  GalR1  has  been  observed  in  the
axoplasm of unmyelinated nerve fibers (type C and Aδ) of
the  dental  pulp  [241,  243].  However,  it  can  induce
pronociceptive  effects  [224,  243]  through  the  action  of
GalR2  [226,  236-238,  244-246]  and  activation  of
phospholipase  C–protein  kinase  C  pathway  [247].
Nevertheless,  the  GAL  action  differs  according  to  its
concentration, where the activation of GalR2 changes from
a Gq pathway (low GAL concentration) to a Gi/o-dependent
pathway (high GAL concentration);  therefore,  it  changes
from a pro- to an antinociceptive-type signaling pathway
[248].  However,  the  latter  has  not  yet  been  observed  in
the dental pulp tissue.

3.5.4. Bombesin (BN)
The  endogenous  peptide,  BN  [249],  and  its

homologues,  neuromedin  B  (NMB)  and  gastrin-releasing
peptide (GRP) are important neuromodulators in the brain
[250,  251].  They  function  through  three  subtypes  of  G
protein-coupled hepta-helical receptors, namely BB1, BB2,
and BB3. NMB and GRP show high affinity and serve as
endogenous  ligands  for  BB1  and  BB2  receptors,
respectively  [250],  whereas  BN activates  both  receptors
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[251], and BB3 is an orphan receptor with low affinity for
all these peptides.

BN  increases  the  presynaptic  release  of  GABA  by
facilitating  the  entry  of  extracellular  Ca2+  [250],  depola-
rizes  GABAergic  interneurons  at  the  presynaptic  level
through  the  inhibition  of  KIRs  and  K+  conductance,  and
increases  the  input  resistance  of  interneurons.  This
suggests that BN reduces the conductance of the neuronal
membrane [250]. Its antinociceptive action may be related
to the release of GABAergic interneurons.

A  previous  study  [13]  demonstrated  the  significantly
higher  presence  of  specific  GABA-like  and  BN/GRP-like
immunoreactivity  in  the  pulps  of  asymptomatic  carious
teeth  than  in  normal  teeth.  Both  peptides  have  been
implicated in antinociception [13] and have been reported
in  TG  neurons  [252].  Their  immunoreactivity  has  been
observed  within  the  pulpal  nerves  and  pulp  fibroblasts
[13].

3.6.  Specialized  Pro-resolving  Lipid  Mediators
(SPMs):  Lipoxins,  Resolvins,  Maresins,  and
Protectins

The  SPMs actively  resolve  inflammation  to  avoid  the
development  of  a  chronic  condition  [253].  These
endogenous  lipid  mediators  act  as  immune  response
modifiers  and  selectively  modulate  and  reduce  the  host
response.  They  resolve  inflammation  [254]  by  clearing
debris and infectious agents, reducing pain, and restoring
the function of damaged tissues [255].

In contrast, several studies support the potent role of
SPMs  in  reducing  the  different  types  of  pain,  including
inflammatory  and  neuropathic  pain  [256-263],  through
GPCRs and different downstream mechanisms, such as the
regulation of inflammatory mediators, TRP channels, and
central sensitization [264].

Studies  with  animal  models  indicate  that  SPMs  can
reduce inflammatory, postoperative, and neuropathic pain
via  immune,  glial,  and  neuronal  modulation  [265].
Additionally, SPMs are produced in small amounts in vivo
(nano-  or  picograms),  and  thus,  the  doses  used  in
experimental  studies  are  of  equal  magnitude  [262,  266,
267].  Despite  the  low  doses,  the  analgesic  and  anti-
inflammatory potency of SPMs is evident. Those doses are
not  comparable  with  the  milligrams  or  grams  used  with
analgesic agents, such as nonsteroidal anti-inflammatory
drugs or opioids [268, 269].

Furthermore, SPMs could potentially participate in the
asymptomatic  nature  of  AIP  via  the  resolution  of
inflammation  and  their  anti-inflammatory  effects.
Nevertheless,  such  issues  need  to  be  clarified  by  well-
established  pulpal  pain  models.  However,  technical
barriers pertaining to the instability, complex and delicate
physicochemical  nature,  and  metabolic  inactivation  of
SPMs  must  be  overcome  [253].

3.7. Miscellaneous Mechanisms

3.7.1. Bacteria and their Antinociceptive Effects
Inflammation-induced  pain  is  an  adaptive  response

designed to protect the body from further injuries [270].
However, disease scenarios vary because some pathogens
can  block,  reduce,  or  modulate  pain  during  the  disease
cycle [271]. For instance, Porphyromonas gingivalis [270]
is  associated  with  destructive  periodontal  disease  [270,
272],  dental  caries  [273],  endodontic  infections,  and
odontogenic  abscesses  [274].  It  exerts  antinociceptive
effects  [270],  where  its  LPS  increases  the  levels  of  the
potent  anti-inflammatory  cytokine  IL-10  [270]  and
stimulates  the  peptide  derived  from  human  telomerase
(GV1001)  that  has  an  anti-inflammatory  effect  without
affecting the cell viability in the human dental pulp, as it
allows  for  downregulating  the  expression  of  TNF-α  and
IL-6  [272].  However,  the  antinociceptive  role  of  this
bacterium  has  not  yet  been  studied  in  AIP;  thus,  more
studies are required.

Metagenomic  studies  have  revealed  that  the  human
microbiome  can  generate  many  bioactive  molecules,
including  histamine,  epinephrine,  and  GABA  [275-277].
Therefore, the possible antinociceptive actions of bacteria,
such  as  Lactobacillus  species  [278,  279]  (Lactobacillus
acidophilus  NCFM),  induce  the  expression  of  the
cannabinoid  and  μ-opioid  receptor  in  the  intestinal
epithelial  cells  [280].  Whereas,  Bifidobacterium  species,
such as B. dentium, also produce GABA [281-283], making
neurons less likely  to reach the threshold depolarization
level [283].

In  contrast,  M.  ulcerans  can  secrete  mycobacterial
polyketide mycolactone to induce analgesia by activating
angiotensin  II  type  2  receptors  (AT2R)  and  inducing
hyperpolarization  through  activation  of  K+  channels  in
nociceptors  [271,  284].  Additionally,  in  acute  staphy-
lococcal  infections  [285],  CGRP,  GAL,  and  somatostatin
can suppress TNF-α release from S. aureus-stimulated or
heat-killed lipoteichoic  acid  macrophages.  This  indicates
that the presence of these bacterial agents may induce the
production of other substances that reduce inflammation
and have analgesic action.

Finally,  in  the  dental  pulp,  LPS  from  bacteria
modulates the nociceptive activity through TLR4-mediated
sensitization  of  TRPV1  to  nociceptors  [286].  Moreover,
LPS could  be  detrimental  if  pathogenic  factors  suppress
nociception  because  they  can  evade  host  detection  and
allow for the silent spread of infection.

3.7.2. Oxytocin (OXT)
OXT,  a  hormone  and  neuropeptide,  induces

antinociception [287-290] and participates in the endogenous
opioid system [288].  At  the TG level,  the expression of  OXT
receptors  (OXTR)  in  the  nociceptive  neurons  (small  A–δ
fibers)  has been confirmed [289,  290],  and their  expression
increases during chronic inflammation [291].  Both OXT and
vasopressin  (V1A)  and  their  associated  receptors,  namely
OXTR and V1AR, respectively, induce analgesia in the sensory
neurons  [292-295],  possibly  because  the  peripheral
antinociceptive action of vasopressin is due to an increase in
the  function  of  the  GABAA  receptor,  inhibition  of  the  acid-
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sensitive  ion  channels  [293,  296],  and  OXT  by  the  direct
desensitization  of  TRPV1  [297].  Therefore,  the  analgesic
action  may  also  be  present  in  the  dental  pulp  due  to  its
expression  in  the  TG.  However,  this  requires  further
investigation.

3.7.3. Phoenixin
The  neuropeptide,  phoenixin,  is  expressed  in  the  TG

sensory  neurons  that  may  not  be  associated  with
antinociception in thermal pain models. However, phoenixin is
associated  with  antinociception  in  the  visceral  pain  models
[298]. Phoenixin suppresses LPS-induced inflammation in the
dental pulp cells, and its anti-inflammatory effects have been
demonstrated  by  confirming  the  expression  of  its  receptor,
GPR173,  in  the  human  pulp  cells  [299].  Further  studies
should address its anti-inflammatory and potential analgesic
properties.

3.7.4. Opiorphin
Enkephalins  have  a  stronger  analgesic  effect  than

morphine,  but  this  effect  does  not  last  because  of  the
degrading  enzymes,  such  as  neutral  endopeptidase  and
aminopeptidase-N [300]. Opiorphin is a peptide that acts as
an inhibitor of these enzymes, thus prolonging the effects of

enkephalins [300-302].
It  is  present  in  the  blood,  urine,  semen,  milk,  tears,

and saliva, although its highest concentrations have been
observed in tears and saliva [303]. The more intense the
pain  due  to  inflammation  is,  the  more  the  salivary
opiorphin  exists;  however,  its  expression  remains  to  be
evaluated in the pulp tissue.

3.7.5. Adipokines
Adipokines  play  multiple  physiological  and  pathological

functions  in  the  dental  pulp,  and  some  of  them  exert  anti-
inflammatory activity, such as adiponectin and ghrelin [304];
therefore,  both  adipokines  could  reduce  pain  in  AIP  due  to
their  inherent  anti-inflammatory  activity.  Although  several
adipokines have recently been identified [305], only a few of
them have been studied in the pulp tissue [304]. Thus, their
potential involvement in pulp inflammation and pain warrants
further investigation.

Table  1  summarizes  all  the  aforementioned  factors
that are potentially involved in AIP, their ligands/receptors
identified  in  the  dental  pulp  tissue  and/or  TG,  and  their
potential analgesic-related mechanisms.

Table 1. Potential factors involved in AIP.

Potential
Mechanism

Ligands
Identified in

the Dental Pulp
or TG

Receptors
Identified in the
Dental Pulp or

TG

Role
Confirmed in
AIP-related
Analgesia

Potential Mechanisms Involved in the Painless Nature of AIP

Endogenous opioids Dental pulp [8, 10,
15, 27, 28, 58-60]. Dental pulp [9, 40]. No

- Negative regulation of neurogenic inflammation [8].
- ORs up-regulation in late inflammatory stages, along with their axonal

transport to the periphery [9, 24, 32, 57].
- Peripheral analgesia by the up-regulated expression of ligands and/or

receptors [30-32].
- Anti-inflammatory effects [74].

- Pain modulation within the inflamed tissue by opioid peptides released
from the immune cells [21-24, 47, 48, 51, 52, 67-72, 80].

- High involvement of the peripheral opioid mechanisms as inflammation
advances [48, 51, 55, 56].

GIRK N/A TG [96]. No Peripheral opioid-mediated analgesia [85, 87-89, 96].

Endogenous
cannabinoids N/A

Dental pulp [10,
11, 130, 141-145,

149].
No

- Anti-inflammatory and analgesic effects [136, 145].
- GIRK activation reduces the release of neurotransmitters [106].

- Increased analgesia through biased signaling [127].
- CB1 inhibits the neurotransmitter release on nerve terminals and CB2

modulates cytokine release on immune cells [130].
- Inhibition of inflammatory pain by anti-inflammatory effects [151-154].
- Cross-talk between CBR and TRPV1 may provide pulpal analgesia [130,

132].

GABA Dental pulp [11].
Dental pulp [12,

164].
TG [163].

No

- GABA-mediated inhibitory neurotransmission [11, 12, 158, 159].
- 5-HT mediated GABAergic inhibition [167, 168].

- Hyperalgesia reduction by GABA peripheral analgesic effects [165].
- Blood flow regulation through inhibition of noradrenaline release in dental

pulp [160].
Neuropeptides

Somatostatin Dental pulp [10]. Dental pulp [212]. No

- Anti-inflammatory neuropeptide that down-modulates a number of immune
functions [175, 193].

- Decreases the neurogenic inflammation [175, 193].
- Inhibits CGRP release from the trigeminal neurons [205].

- Exerts antinociceptive functions [179-182, 187, 188].
- Decreases the conductance of voltage-gated Ca2+ channels [172, 183] and

activates K+ channels [184-186].
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Potential
Mechanism

Ligands
Identified in

the Dental Pulp
or TG

Receptors
Identified in the
Dental Pulp or

TG

Role
Confirmed in
AIP-related
Analgesia

Potential Mechanisms Involved in the Painless Nature of AIP

Cortistatin Dental pulp [212]. N/A No

- Potent anti-inflammatory effect [195, 204, 211] by regulating immune
tolerance 2009].

- Deactivation of inflammatory responses [196, 203, 206, 207].
- Decreases the presence/activation of Th1 and Th17 cells in the periphery

[211].
- Inhibits pro-inflammatory mediators (TNF, IL-6, IL-12, IL-1, NO, and GM-

CSF) and increases the levels of IL-10 [208, 209].
- Relieves hyperalgesia and allodynia and acts as a neuroprotector and

neuroregenerator [205].
- Analgesic effect in inflammatory [197] and neuropathic pain [210].

- Inhibits the CGRP release from the trigeminal neurons [205].
- Depresses the neuronal electrical activity [206].- Relieves hyperalgesia and

allodynia and acts as a neuroprotector and neuroregenerator [205].
- Analgesic effect in inflammatory [197] and neuropathic pain [210].

- Inhibits the CGRP release from the trigeminal neurons [205].
- Depresses the neuronal electrical activity [206].

Galanin Dental pulp [212].
TG [245].

Dental pulp [241].
TG [241, 245]. No - Antinociceptive effect [225-235, 240].

- Opioid systems are involved in the galanin-induced antinociception [240].

Bombesin Dental pulp [13].
TG [252]. N/A No

- Antinociceptive effect [13].
- Depolarizes GABAergic interneurons at the presynaptic level and reduces

the conductance of the neuronal membrane [250].
Specialized pro-resolving lipid mediators (SPMs)

Lipoxins N/A N/A No - Potent pro-resolving and anti-inflammatory effects and analgesic action
[264, 265].

Resolvins N/A N/A No
- Potent pro-resolving and anti-inflammatory effects and analgesic action

[264, 265].
- Analgesic effect in inflammatory pain [259, 260, 262, 269].

- Potent inhibition of TRP channels [261].

Maresins N/A N/A No - Potent pro-resolving and anti-inflammatory effects and analgesic action
[264, 265].

Protectins N/A N/A No - Potent pro-resolving and anti-inflammatory effects and analgesic action
[264, 265].

Miscellaneous mechanisms

Antinociceptive
bacteria - - No

-Porphyromonas gingivalis LPS exerts antinociceptive effects via an
increase in IL-10 levels [270].

-Bifidobacterium species, such as B. dentium, produce GABA [281-283].

Oxytocin TG [290]. TG [290-292]. No

- Induces membrane hyperpolarization in pain-sensitive dorsal root ganglia
neurons [287].

- Antinociceptive effect [287-290].
- Inhibits the activity of acid-sensing ion channels [293].

- Suppresses nociception of inflammatory pain via TRPV1-desensitization
[297].

Phoenixin TG [298]. Dental pulp [299]. No
- Suppresses the lipopolysaccharide-induced inflammation in dental pulp

cells, suppressing the release of pro-inflammatory cytokines and
inflammatory mediators [299].

Opiorphin N/A N/A No - Protects enkephalins from degradation and activates restricted opioid
pathways specifically involved in pain control [300-303].

Adipokines Dental pulp [304]. Dental pulp [304]. No

Some exert anti-inflammatory
effects by inducing the secretion of

anti-inflammatory interleukins or inhibiting the production of
proinflammatory
cytokines [304].

N/A: not available information.

CONCLUSION
This  review  presents  up-to-date  information  on  the

painless  nature  of  AIP.  Factors  that  could  potentially  be
involved  in  the  mechanisms  of  analgesia  underlying  AIP
include endogenous opioids, GIRK channels, endogenous
cannabinoids,  GABA,  neuropeptides  (somatostatin,
cortistatin,  galanin,  and  bombesin),  and  SPMs  (lipoxins,
resolvins,  and  maresins).  We  have  also  identified  some
miscellaneous factors that could play a role in AIP, such as
bacteria  with  their  antinociceptive  effects,  oxytocin,

phoenixin,  opiorphin,  and  adipokines,  considering  their
potential  analgesic-related  mechanisms.

Nevertheless,  the  precise  mechanisms  responsible  for
the  lack  of  symptoms  in  AIP  remain  to  be  elucidated,  and
further research is warranted despite the recent advances in
science  and  technology.  The  available  literature  mainly
investigated symptomatic irreversible pulpitis (SIP), where a
recent  study  determined  the  levels  of  inflammation,
oxidative  stress,  and  extracellular  matrix  degradation
biomarkers  in  SIP  [305,  306].  Thus,  it  is  compelling  to

(Table 1) contd.....
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perform  a  similar  biochemical  mapping  for  AIP  that  helps
elucidate  the  expression  pattern  of  endogenous  analgesic
biomolecules.  Furthermore,  vascular,  neural,  cellular,  and
biochemical changes can occur without pain (8).

Moreover, it is important to highlight the chronic nature
of  AIP.  In  this  regard,  systemic  chronic  inflammation
constitutes  a  health-damaging  phenotype  that  is  triggered
by damage-associated molecular patterns, is persistent (non-
resolving),  has  low-grade  magnitude,  leads  to  collateral
damage,  is  age-related,  and  is  silent  (has  no  canonical
standard biomarkers) [307]. The influence of these factors
should  be  investigated  to  collect  data  concerning  the
analgesic features and pathophysiology of AIP in the context
of the local microenvironment of the pulp tissue.

Furthermore, multiplatform data-integration models have
been  used  to  identify  the  differentially  expressed  genes  to
analyze the molecular mechanisms underlying pulpitis [308,
309]. Thus, they could improve our current understanding of
the nature of AIP. Genetic and epigenetic characterization of
pulpal  inflammation  can  also  help  decipher  the  balance
between  proinflammatory  and  anti-inflammatory  gene
expression in AIP [310] and how it influences analgesia. This
is  especially  relevant  as  several  genes  known  to  modulate
pain  and  inflammation  show  a  higher  level  of  differential
expression  in  patients  with  asymptomatic  and  mild  pain
compared  to  those  with  moderate  to  severe  pain  [311].

Regarding  the  limitations  of  this  review,  it  must  be
highlighted  that  most  studies  were  performed on  animals,
and AIP could not be differentiated from SIP. Furthermore,
our  search  was  confined  to  two  electronic  databases,
potentially limiting the inclusion of relevant literature in our
review.  Despite  these  limitations,  our  study  possesses
notable  strengths.  We  have  meticulously  compiled  a
substantial  amount  of  data,  contributing  to  an  updated
narrative review that delves into the potential mechanisms
behind the asymptomatic nature of AIP. Notably, the latest
report  on  the  fundamentals  of  the  painless  nature  of  AIP
describes a clinical study that was performed two decades
ago  [16].  Additionally,  our  findings  could  offer  valuable
insights for designing new studies aimed at identifying the
precise molecular mechanisms responsible for the absence
of symptoms in AIP.

Although  the  present  review  enlists  some  candidate
ligands  and/or  receptors  that  potentially  regulate  the
asymptomatic  nature  of  AIP,  no  direct  evidence  supports
these statements (Table 1). Indeed, the literature regarding
this  topic  is  scarce.  However,  paradoxically,  patients  with
dental  diseases  are  diagnosed  with  AIP  daily  worldwide.
Therefore, understanding the analgesia and biology behind
AIP  is  necessary  and  could  help  improve  the  clinical
diagnosis  of  pulp  pathology,  especially  since  recent
investigations  have shown a  good correlation between the
clinical symptoms of pulpitis and histological findings [312].
On  the  other  hand,  anecdotal  reports  among  dentists
confirm that in some AIP cases that may have had trauma or
deep  caries,  the  inflamed  pulp  tissue  is  open  to  the  oral
cavity. This would mean no or little increase in pulpal tissue
pressure is induced, which is thought to be involved in the
“asymptomatic” AIP condition. However, this assumption is
very  simplistic  in  explaining  the  potential  biological
fundamentals  behind  AIP.

Finally,  other  dental  and  medical  pathologies  share
asymptomatic characteristics similar to those of AIP. These
include  symptomless  pericoronitis  [313,  314],  chronic
periodontitis  [315],  asymptomatic  apical  periodontitis
[316-318],  congenital  painlessness  disorders  [319-321],
painless  neuropathies  [322],  NGF  mutations  [323],  Buruli
ulcer  [324],  and  painless  chronic  pancreatitis  [325-327].
Hence,  analyzing  the  cellular,  biochemical,  and/or  clinical
findings  from  these  conditions  could  help  enhance  our
understanding  of  the  possible  mechanisms  underlying  the
asymptomatic nature of AIP.

LIST OF ABBREVIATIONS

BN = Bombesin
CBRs = Cannabinoid Receptors
CORT = Cortistatin
EOP = Endogenous Opioid Peptides
FAAH = Fatty Acid Amide Hydrolase
GABA = Gamma-aminobutyric Acid
GAL = Galanin
GIRK = G Protein-activated Inwardly Rectifying K+

Channels
NADA = N-arachidonoyl-dopamine
NOR = Nociceptin/orphanin Receptor
OXT = Oxytocin
OX1Rs = Orexin 1 Receptors
SPMs = Specialized Pro-resolving Lipid Mediators
SST = Somatostatin
TRPV1 = Transient Receptor Potential Vanilloid Subtype

1 Channel
vlPAG = Ventrolateral Periaqueductal Gray Matter
2-AG = 2-arachidonylglycerol
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