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Abstract:

It is challenging to completely and predictably regenerate the missing periodontal tissues caused by the trauma or disease. To regenerate the
periodontium, there is a need to consider several aspects that co-occur with periodontal development. This study provides an overview of the most
up-to-date investigations on the characteristics and immunomodulatory features of Periodontal Ligament Stem Cells (PDLSCs) and the recent
interventions performed using these cells, focusing on cell survival, proliferation, and differentiation. Keeping in mind the relationship between age
and  potency  of  PDLSCs,  this  work  also  demonstrates  the  necessity  of  establishing  dental-derived  stem  cell  banks  for  tissue  regeneration
applications. The data were collected from Pubmed and Google Scholar databases with the keywords of periodontal ligament stem cells, tissue
engineering, characteristics, and stem cell therapy. The results showed the presence of wide-ranging research reports supporting the usability of
PDLSCs for periodontal reconstruction. However, a better understanding of self-restoration for adequate regulation of adult stem cell growth is
needed for various applied purposes.
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1. INTRODUCTION
The  gingiva  generally  shows  the  first  signs  of

inflammation  through  disease  processes  in  the  oral  cavity.
Therefore,  knowledge  about  the  structure  of  periodontium is
necessary for understanding the effects of any disease process.
Periodontium is a complicated structure in the oral cavity that
contains  soft  (gingiva  and  periodontal  ligament)  and  hard
(cementum  and  bone)  tissues  [1].  Prominent  functions  of
Periodontal  Ligament  (PDL)  include  supporting  the  tooth
structure and protecting nerves and blood vessels within it from
injury through mechanical loading [2]. It is acknowledged that
PDL has significant roles in homeostasis, sensation, nutrition
of teeth, protection against oral cavities' pathogens [3, 4], and
renewal  of  periodontal  tissue  by  providing  the  surrounding
tissues with stem/progenitor cells [5].

Periodontal disease includes a variety of diseases that are
caused by inflammation. Periodontal diseases have distinctive
features, such as destroying the supporting tissues of the teeth
and  chronic  inflammation  commenced  with  the  infection
caused by bacteria [6]. If this inflammation is not treated and
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eliminated, it can cause attachment loss, bone resorption, and
eventually tooth extraction [7]. A decline in individual living
standards  through  significant  aesthetic  problems  and
dysfunctions is caused by tooth loss [8]. Scaling, root planning,
and  open-flap  debridement  are  examples  of  conventional
therapies  that  dentists  achieved  to  decelerate  periodontitis
progression.  Other  periodontal  regenerative  therapies,
including  Guided  Tissue  Regeneration  (GTR)  and  bone
grafting, have commonly been used in clinics [9]. However, the
results of these treatments have been limited since they have
not  reached a  complete  restoration of  the  periodontium [10].
Tissue Engineering (TE) is an alternative method that can ease
the regeneration process of periodontal tissues [11]. TE is an
advanced  field  of  regenerative  medicine  that  denotes  the
practice of combining scaffolds, cells, and biologically active
molecules into functional tissues. The aim of TE is to gather
functional  constructs  that  restore,  maintain,  or  recover
damaged  tissues  or  whole  organs  [12].

Stem cells  and  their  derived  products  are  great  promises
for  novel  medicinal  management.  Stem  cell  therapy,  also
recognized  as  regenerative  medicine,  endorses  the  repair
response of diseased, dysfunctional or injured tissue using stem
cells  or  their  derivatives.  Up  to  now,  the  various  stem  cells
have  extensive  use  in  tissue  engineering,  including
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Mesenchymal  Stem  Cells  (MSCs),  Adipose  tissue-derived
Stem  Cells  (ADSCs),  and  other  tissue-specific  somatic  stem
cells [13]. MSCs, as multipotent cells,  have the capability of
differentiation into multiple lineages depending on the signals
received from encircling the microenvironment [14].

Five disparate MSC sources have been detected in human
postnatal  dental  tissue,  including Periodontal  Ligament Stem
Cells (PDLSCs), Stem cells from Human Exfoliated Deciduous
teeth  (SHED),  Dental  Pulp  Stem  Cells  (DPSCs),  Dental
Follicle  Precursor  Cells  (DFPCs),  and  Stem  Cells  from  the
Apical Papilla (SCAP) [15, 16]. Fig. (1) shows the process for
dental stem cell-based tissue engineering.

Although the number of PDLSCs that can be obtained by a
single  sample  is  limited  [3],  these  stem  cells  can  be  easily
isolated  and  expanded  in  vitro  [17]  Fig.  (2).  PDLSCs  are
mainly derived from the mid-third section of the root surface
after permanent tooth extraction. Harvesting PDLSCs is not so
difficult since they can be derived from both the surface of the
root  and  the  alveolar  bone  [18].  PDLSCs  isolated  from  the
remnants  of  PDL  on  the  alveolar  bone  surface  of  extraction
sockets have revealed a more promising osteogenic/adipogenic
differentiation capability than those from the root surface [18,
19].

A prominent source of MSCs is provided by PDL to their
approachability and obtainability for autologous transplantation
[18].  This  type  of  MSCs  is  capable  of  multipotent
differentiation,  including  osteogenic,  adipogenic,  myogenic,
and  chondrogenic  commitment.  Besides,  these  mesenchymal
lineages, through the ectomesenchymal origin of PDLSCs, can
differentiate  into  neuronal  phenotypes  [20  -  22].  It  has  been
substantiated that various paracrine factors with different func-
tions,  such  as  immunomodulation,  anti-apoptosis,  and  anti-
inflammation,  are  secreted  by  PDLSCs,  and  the  secreted
factors of surviving cells in the transplanted site show positive
effects on periodontal wound healing [23, 24]. Some problems
have been discovered associated with the use of PDLSCs, such
as limitations in the number of stem cells obtained by a single
sample [3], sensitive condition of stem cells according to donor

quality [25], and tumorigenesis [5].

The current study investigated the PDLSCs from multiple
viewpoints,  including  markers,  immunomodulation,
differentiation,  aging,  and  tissue  engineering.

2. MARKERS FOR PDLSCs
Markers that have been reported in numerous studies are

Cluster of Differentiation (CD)105 [15, 16, 18, 22, 23, 26 - 38],
CD90 [15, 16, 18, 22, 23, 26, 28, 29, 31 - 34, 36 - 40], CD73
[15,  22,  27  -  29,  31,  34,  39],  Stromal  Precursor  Antigen-1
(STRO-1) [16, 30, 31, 35, 37, 38, 41, 42], CD146 [16, 30 - 33,
35, 37, 38, 41, 42], CD29 [16, 31, 33, 35, 38, 41, 42], CD13
[16, 31, 33, 36], CD44 [15, 16, 30, 31, 33, 34, 41], CD166 [16,
22, 31, 33] but lack expression of CD45 [15, 22, 28, 29, 32, 34,
36, 38, 40, 42], CD34 [15, 22, 28, 29, 32, 34, 37, 42], CD14
[22, 28, 29, 38], CD19 [28, 30, 34], CD31 [22, 37, 38, 40] (Fig.
3).

In some studies, PDLSCs are positive for CD9 [33], CD10
[31,  33],  CD49d  [33],  STRO-4  [41],  STRO-3  [31],  CD106
[31], CD349 [31], CD26 [31], CD71 [31], and Mesenchymal
Stromal  Cell  Antigen-1  (MSCA-1)/Tissue  Nonspecific
Alkaline  Phosphatase  (TNAP)  [31]  but  negative  for  CD11b
[28, 34], Human Leukocyte Antigen (HLA)-DR [22, 34], HLA
Cl  II  [28],  CD79a  [22,  28],  CD40  [16,  22],  CD80  [16,  22],
CD86 [16, 22], CD54 [22], and CD20 [29].

3. PDLSCs AND IMMUNOMODULATION
Immunomodulation  is  a  favorable  characteristic  of

PDLSCs. Studies have shown that the expression of immune
co-stimulating  factors  is  absent  in  PDLSCs.  Furthermore,
PDLSCs could inhibit immune cell proliferation [43, 44]. This
valuable property might be beneficial for stem cell therapies in
periodontal  tissue  regeneration  since  the  inflammatory
environment  in  periodontitis  suppresses  the  physiological
repair  procedures,  including  stem  and  mature  cells  [45].
Besides cell regeneration, PDLSCs display immunomodulatory
features,  which  are  evaluable  through  immunomodulatory
function  expressing  HLAE,  HLAG  and  indoleamine-pyrrole
2,3-dioxygenase 1 (IDO1), IDO2 [46].

Fig. (1). Dental stem cell-based tissue engineering (with permission from [13]).
Reprinted from Tissue Engineering Part B: Reviews, 18, Kim BC, Bae H, Kwon IK, Osteoblastic/cementoblastic and neural differentiation of dental
stem cells and their applications to tissue engineering and regenerative medicine, 235-544, 2012, with permission (Under the terms of the Creative
Commons Attribution 4.0 International License (Creative Commons Public Domain Mark 1.0), which permits unrestricted use.)
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Fig. (2). Light microscopy image represents periodontal ligament stem cells culture stained with toluidine blue (with permission from [20]).
Reprinted  from European Cells  and Materials,  32,  Diomede F,  Zini  N,  Gatta  V,  Human periodontal  ligament  stem cells  cultured  onto  cortico-
cancellous scaffold drive bone regenerative process, 181-201. 2016, with permission (under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use.)

Fig. (3). Markers, immunomodulatory properties, and harvesting of PDLSCs.

Besides  their  immunogenicity,  an  immunosuppressive
possession with  action on B and T cells  should facilitate  the
use  of  allogeneic  PDLSCs for  periodontal  regeneration  [47].
Firstly,  owing  to  co-stimulatory  molecules  of  T  cells  (CD80
and  CD86)  and  HLAII  DR  absence,  the  immunogenicity  of
PDLSCs  is  low.  Secondly,  due  to  the  up-regulation  of
prostaglandin  E2  (PGE2)  and  cyclooxygenase-2  (COX-2),
PDLSCs restrain allogeneic T cell proliferation [48]. PDLSCs
enhance the production of regulatory T cells (T-regs) in healthy
tissue. In inflamed periodontium, PDLSCs have a low potential
for  induction  of  T-regs.  Some  studies  also  demonstrated
reduced  inhibitory  effects  on  T  cell  proliferation  [49].
Furthermore,  PDLSCs  blocked  the  activation  of  B  cells  by
programmed death-1 [50].

Wang  et  al.  proved  that  PDLSCs  might  decrease  the

apoptosis of neutrophils via interleukin-6 (IL-6) [51]. PDLSCs
can be a valuable source for reducing the autoimmune disease
destruction  in  Type  1  Diabetes  (T1D)  while  they  have  an
immunosuppressive  impact  on  monocyte-derived  dendritic
cells (mDCs) in T1D patients [52]. Furthermore, PDLSCs may
induce  macrophage  polarization  to  the  M2  phenotype.  This
shift  to  M2  macrophages  in  the  first  stages  of  tissue
regeneration is contributed to the promoted periodontal tissue
regeneration [53, 54]. Collectively, signals from the PDLSCs
could modify the immune-related niche to promote periodontal
tissue regeneration. The reports proved the immunomodulatory
impact of PDLSCs on both cellular and humoral immunity. It
seems  that  this  property  is  critical  for  periodontal  tissue
regeneration  in  inflamed  environments  and  increases  the
success  rate  of  cell  transplantation.

http://creativecommons.org/licenses/by/4.0/
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Fig. (4). Identification of PDLSCs. (A) Single colony of periodontal ligament stem cells stained with methylene blue. (B) Osteogenic differentiation
of PDLSCs. (C) Adipogenic differentiation of PDLSCs (adopted from [53] with permission).
Reprinted from Stem Cell Research & Therapy, 10, Liu J, Chen B, Bao J, Zhang Y, Lei L, Yan F, Macrophage polarization in periodontal ligament
stem cells enhanced periodontal regeneration, 1-11, 2019, with permission (under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use.)

4. DIFFERENTIATION OF PDLSCs

Moreover,  it  has been reported that  PDLSCs and DPSCs
own  the  potential  for  osteogenic  differentiation  [22,  55].
PDLSCs favorably differentiate into osteoblasts and adipocytes
[34, 56]. Fig. (4) shows the identification of PDLSCs. Within
an  osteogenic  differentiation  growth  medium,  osteoblasts
formation  occurs,  and  mineralization  nodules  are  developed
[15].  The  capability  of  adipogenic  differentiation  is  also
demonstrated in several PDLSC differentiation studies [22, 34,
55, 57]. Moreover, it has been observed that due to exposure to
a specific differentiation medium, PDLSCs would differentiate
into chondrocytes [34, 55, 58].

PDL  and  dental  follicles  possess  multipotent  stem  cells
with differentiation capacity, especially neural cells [15]. The
work  from  Bahrami  et  al.  [15]  revealed  that  the  neurogenic
differentiation  potential  of  PDLSCs  was  more  than  DFPCs.
The gene expression level and neural cell protein in PDLSCs
were  more  than  DFPCs  of  third  molar  [15].  Meanwhile,  by
plating  on  cytokine-free  laminin-coated  plates,  impulsive
differentiation into neuronal lineages was detected [59]. Also,
another  study  showed  that  PDLSCs  could  augment  Retinal
Ganglion  Cell  (RGC)  viability  and  axon  regeneration  [60].
Additionally,  Li  et  al.  confirmed  odontogenic  features  of
PDLSCs beyond their neuronal differentiation potential [61].
Furthermore,  Pelaez  et  al.  [62]  illustrated  that  exposing
PDLSCs  to  short-term  mechanical  strain  induces  them  to
differentiate into cardiac myocytes. PDLSCs can differentiate
into endothelial cells that would provide capillary-like sprouts
containing lumens in vitro [63]. Additionally, they possess the
potential  for  differentiation  into  various  PDL  cells,  such  as
fibroblasts,  osteoblasts,  endothelial  cells,  cementoblasts,  and
neural cells [64, 65].

PDLSCs  have  similarities  with  Bone  Marrow-derived
Mesenchymal Stem Cells (BMSCs) in some features, such as
tri-linage differentiation potential and immunomodulatory and
anti-apoptotic  function  [21,  23].  PDLSCs  possess  specific
additional  functions,  such  as  cementum-PDL  complex
fabricating ability and a tooth-specific structure [22, 24]. Lee et
al.  [39]  suggested  that  PDLSCs  derived  from  the  PDL  of

supernumerary teeth showed higher colony-forming efficiency
than  BMSCs  and  that  they  could  differentiate  in  both
adipocytes  and  osteoblasts.  It  has  been  found  that  PDLSCs
have a remarkable potential to differentiate into PDL, alveolar
bone, and cementum compared to BMSCs under regenerative
conditions  [21].  As  reported,  PDLSCs  are  multipotent  stem
cells.  They  have  osteogenic,  adipogenic,  chondrogenic,
neurogenic,  and  odontogenic  differentiation  potential.
Additionally,  PDLSCs  could  generate  cardiac  myocytes,
endothelial  cells,  and  cementoblasts.  Hence,  PDLSCs  are
appropriate cells in regenerative dentistry that can be used in
periodontal disease. Furthermore, they could be used in other
body parts for therapeutic goals.

5. EFFECT OF AGING ON PDLSCs

In  clinical  fields,  the  importance  of  PDL  in  auto-
transplantation is known due to the potency of the donor’s PDL
to  cause  the  renewal  of  periodontium  components,  such  as
PDL, bone, and gingiva within the recipient site [8]. When the
donor age increases, the functional and regeneration potential
of stem cells will decrease [13, 66, 67] (Fig. 5). For example,
Wu et al. [40] revealed that donor age has a negative impact on
the osteogenic potential of PDLSCs. It was found that PDLSCs
derived from aged donors had less regenerative potential than
those  from  young  donors  [25].  Comparing  biological
characteristics  of  PDLSCs  derived  from  donors  at  different
ages  and  according  to  the  results  of  various  studies,
proliferation  [25,  68  -  70],  migration  ability  [68],
differentiation  ability  [25,  68,  70],  and  immunosuppression
ability  [70]  of  PDLSCs  have  a  negative  correlation  with
donor’s  age.

Consequently, there is a need to design refined protocols
for the successful proliferation and differentiation of PDLSCs
derived from old individuals as a requirement for autologous
cell-based  strategies  to  treat  periodontal  diseases.  Allogenic
PDLSCs may be promising in  the future by establishing cell
banks.  Cells  from  young  donors  may  be  beneficial  for
periodontal  regeneration  therapy  because  of  their  matrix
protein  production,  osteogenic  potential,  and  functional
features  following  sheet  fabrication.

http://creativecommons.org/licenses/by/4.0/
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Fig. (5). Dental stem cells with aging (Adopted from [13] with permission).
Reprinted from Tissue Engineering Part B: Reviews, 18, Kim BC, Bae H, Kwon IK, Osteoblastic/cementoblastic and neural differentiation of dental
stem cells and their applications to tissue engineering and regenerative medicine, 235-544, 2012, with permission (Under the terms of the Creative
Commons Attribution 4.0 International License (Creative Commons Public Domain Mark 1.0), which permits unrestricted use.)

6. TISSUE ENGINEERING WITH PDLSCs

Tissue  engineering  is  an  interdisciplinary  field  that
includes  the  basics  of  engineering  and  biology  to  generate
biological substitutes [71]. Tissue engineering in dentistry has
two goals: first, to create therapeutic approaches to regenerate
dental  and  craniofacial  structures,  and  the  second  goal  is  to
repair their natural functions [72]. Several types of cell-based
regenerative  therapies  are  currently  being  applied,  including
scaffold engineering and cell-sheet tissue engineering.

6.1. Scaffolds

The scaffold is an artificial extracellular matrix (ECM) and
is  a  model  for  cell  growth  and  tissue  engineering.  Scaffolds
should  have  some  vital  characteristics,  including
biocompatibility,  biodegradability,  adequate  mechanical  and
physical  stability,  and  mimicking  the  niche  to  ease  cell
adhesion, proliferation, differentiation, and tissue regeneration
[73 - 75].

Scaffolds  are  vital  elements  for  periodontal  tissue
regeneration to hold cells and contain many bioactive materials
[76].  Herein,  we  reviewed  the  different  scaffolds  and  cell
sheets  applied  for  PDLSCs  tissue  engineering.

Chitosan is material extracted from invertebrates like crab,
and lobster, which is also known as chitin. Chitosan has been
used  as  bone  graft  material  and  has  characteristics  like  high
viscosity,  water-binding  properties,  biocompatibility,
biodegradability,  and  low  cytotoxicity  [77].  Ge  et  al.
demonstrated  that  seeded PDLSCs on a  nanohydroxyapatite-
coated  genipin-chitosan  conjunction  scaffold  showed
significantly superior viability and alkaline phosphatase (ALP)
activity and up-regulated the bone-related markers to a more
extent  compared  to  PDLSCs  seeded  on  the  genipin-chitosan
framework [78].

Alginate  scaffolds  are  excellent  for  TE  in  biological

systems  since  they  have  natural  biocompatibility  and  easily
adjustable immunosuppression and degradation features [79].
Alginate can ease the spatial arrangement of the encapsulated
MSCs within its three-dimensional (3-D) structure, causing the
creation  of  a  structural  organization  with  similarity  to  the
native in vivo microenvironment [80]. Moshaverinia et al. [81]
suggested  that  chondrogenic  differentiation  and  viability  of
PDLSCs  encapsulated  within  Arg-Gly-Asp  (RGD)-coupled
alginate-hydrogel  scaffold  have  been  enhanced  both  in  vitro
and  in  vivo.  In  an  injectable  approach,  encapsulated  MSCs
demonstrated  high  levels  of  proliferation,  viability,  and
chondrogenic differentiation ability. Moreover, PDLSCs with
transforming  growth  factor  beta  (TGF)  b3-loaded  RGD-
modified alginate microspheres are favorable alternatives for
tendon  regeneration  [17].  In  another  study,  PDLSCs
encapsulated in RGD-coupled alginate microspheres presented
a moderate ability for osteodifferentiation [82].

HydroMatrix  (HydM)  is  an  advanced  injectable  peptide
nanofiber hydrogel presented recently for cell culture. PDLSCs
can adhere, survive, migrate, and proliferate on HydM, and this
gel also enhances their osteogenic differentiation [83].

Collagen is one of the most broadly used natural scaffolds.
It has been observed that the combination of collagen scaffolds
with  platelet  growth  factors  and  PDLSCs  could  not
significantly  improve  osteogenic  regeneration  [84].  Due  to
their  anti-inflammatory  and  regenerative  qualities,  natural
ECM scaffolds  are  considered  superior  alternatives  to  type-I
collagen  (COLI)  membranes  [85,  86].  ECM  scaffolds  are
derived  from  the  dermis,  small  intestine,  and  pericardium.
ECM  molecular  composition  comprises  various  structural
proteins, including COLI, proteoglycans, glycosaminoglycans,
glycoproteins, cytokines, and growth factors that are expressed
as guidance of cell behavior [87, 88]. An increase in viability,
proliferation, and reduction in apoptosis compared to PDLSCs
treated  with  COLI  are  caused  by  incubation  with  ECM.
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Additionally,  co-culture  with  ECM  membrane  enhances
PDLSC  migration  and  bio-attachment.  The  ECM  membrane
could be used as an appropriate scaffold in the GTR application
for periodontal disease treatment [36].

The  amniotic  membrane  is  a  biological  membrane  that
encircles  the  amniotic  sac  [89].  The  amniotic  membrane  has
several  biological  features  appropriate  for  periodontal
regeneration, including low immunogenicity, anti-fibrosis, anti-
inflammation,  and  being  rich  in  ECM  constituents.
Furthermore,  this  membrane can maintain close contact  with
the  transplanted  area  due  to  its  flexible  nature  [90,  91].
Amniotic membranes can be used as scaffolds and can serve as
a substantial material in TE [92].

Calcium  Phosphate  Cement  (CPC)  can  be  used  as  an
excellent  scaffold  material  for  dental  and  craniofacial
treatments  [93].  CPC  has  potent  biocompatibility,
osteoconductivity, osteoinductivity, and bioactivity [94, 95]. In
a  study,  PDLSCs  were  cultured  on  a  Biphasic  Calcium
Phosphate  (BCP)  scaffold,  and  the  results  exhibited  that  the
PDLSC-seeded BCP enhanced periodontal tissue regeneration.
Moreover, new bone formation and collagen fibers were also
observed [96].

6.2. Cell Sheet Engineering

Cell sheet engineering is a modern method in TE; it can be
used in various fields like corneal surface reconstruction and
non-invasive endoscopic transplantation [97,  98].  Proteolytic
enzymes are one of the privileges of cell sheets concerning the
unfavorable shortage of degrading cell adhesion molecules and
the  deposited  ECM  [99].  Therefore,  compared  to  scaffold-
based tissue  engineering,  a  cell  sheet  can bring healthy cells
connected by intact cell-cell interactions and ECM proteins. It
is  also  proved  in  some  investigations  that  they  have  an
important  role  in  periodontal  tissue  regeneration  [35,  100].
Iwata  et  al.  confirmed  that  the  autologous  PDL-derived  cell
sheets  are  safe  and  efficient  in  severe  periodontal  defects.
Besides,  the  stability  of  these  sheets  has  been  shown  during
long-term  follow-up  [101].  A  nanopatterned  substratum
activated  with  thermos-responsive  polymers  eased  the
reproducible  and  robust  production  of  patterned  cell  sheets
utilizing PDLSCs. The PDLSCs showed accelerated impetuous
monolayer  creation,  as  well  as  enhanced  gene  expression
patterns related to PDL regeneration compared to the control
group [30].

Platelet-rich  plasma  (PRP)  is  a  common  autologous
platelet concentration with different growth factors. It contains
growth factors, such as platelet-derived growth factor (PDGF),
TGF-β, vascular endothelial growth factor (VEGF), fibroblast
growth factor-2 (FGF), and insulin-like growth factor I (IGF).
These types of growth factors can increase the aggregation of
cells  in  a  periodontal  defect  [35].  PDLSCs  treated  with  1%
PRP exhibited the highest osteogenic differentiation potential
and  superior  periodontal  tissue  regeneration  capability  [35].
PRP  may  increase  the  proliferation  and  ECM  release  of
PDLSCs in the process of cell sheet formation [35]. Platelet-
rich fibrin (PRF) is known as the second generation of platelet
concentrate.  It  has  superior  characteristics  compared  to
conventional  PRP,  including  simplicity  of  preparation  and  a

lack of the biochemical handling of blood [102]. Notably, the
3D  structure  of  this  newly  developed  material  is  ideal  for
directing  therapeutic  stem  cells  to  a  particular  site  of
destruction [103]. In a study, the authors claimed that the novel
cell  transplant  approach  using  PDLSCs/PRF,  containing  cell
sheet  particles  of  PDLSCs  and  PRF granules,  may  stimulate
periodontal defect healing and PDL regeneration [104].

Based on the reviewed literature in this section, the various
existing scaffolds have shown great  potential  for  periodontal
regeneration.  The  above-reviewed  scaffolds  are  mostly
biodegradable biomaterials. They degrade in the body once the
new tissue is formed. Besides, most of the polymers mentioned
above  display  a  sustained  degradation  process  with  some
degree  of  controllability  [105,  106].  The  characteristics  of
biomaterial scaffolds have mainly been characterized in vitro,
providing good fundamental information for future in vivo tests
[106].

6.3. Chemical Interventions

The  fabrication  of  functional  organs  with  TE  is  very
challenging.  Such  barricades  consist  of  inadequate  cell
migration  into  and  retaining  within  scaffolds,  host
inflammatory  reactions,  inadequate  abilities  in  generating
microscale vascularization for mass transfer,  various rates of
cell multiplication in comparison to scaffold destruction, and
the  incapability  of  generating  functional  tissues  with  the
structural intricacy of native tissues due to scaffold-dependent
techniques  [107].  Some  studies  focus  on  improving  the
osteogenic  potentiality  of  PDLSCs  and  modulating  the
expression profile of growth factor-linked genes [108 - 110].

Acetyl  Salicylic  Acid  (ASA),  known  as  aspirin,  is  a
commonly used drug globally and is  generally useful  for the
secondary  prevention  of  cardiovascular  disease  [111].  The
observations in the previous studies showed that ASA made a
positive impact on reducing the loss of human alveolar bone
and  enhancing  periodontal  tissue  health  [112].  Aspirin  can
enhance  the  proliferation  of  PDLSCs  and  their  osteogenic
differentiation potential and can ameliorate periodontal health
by stimulating growth factor-associated genes in PDLSCs and
improving their osteogenic potential [29].

Vitamin  C  (Vc)  is  a  water-soluble  vitamin  essential  for
immune system functions. It is critical in human health and is
profoundly  involved  in  numerous  metabolic  and  signaling
routes.  It  has  an  antioxidant  role  with  the  capability  to  less
Reactive  Oxygen  Species  (ROS).  In  Vc  provided  culture
medium, Vc is a growth factor to enhance cell proliferation and
DNA  synthesis  [113].  Moreover,  in  periodontal  disease,  Vc
diminishes the development of the damage process, stimulates
the  differentiation  of  PDLSCs  [114],  and  augments  the
viability  of  these  cells  [115].  Wei  et  al.  suggested  that  Vc
enhanced the proliferation ability and osteogenic differentiation
of  PDLSCs,  engaging  telomerase  activity  in  PDLSCs,  thus
indicating  the  superior  potential  for  regeneration  and
differentiation [116]. Another study recognized that Vc-treated
PDLSCs  in  a  long-term  culture  preserved  a  slender
morphology,  greater  growth  rate  and  migration  ability,
stemness,  and osteogenic  differentiation  potential  [117].  The
development of a valid approach based on Vc treatment eased
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the  construction  of  highly  practical  and  functional  PDLSC
sheets and the subsequent regeneration of periodontal tissues
[116].

Metformin  (1,1-dimethylbiguanide  hydrochloride)  is  a
hypoglycemic  medicine  vastly  consumed  by  type  2  diabetes
mellitus  patients  [118].  Metformin  can  be  applied  for  vast
purposes,  like  antitumor,  immunoregulatory,  and  anti-
inflammatory functions [119]. It has been used as an additive
material  to  scaling  and  root  planning  in  the  treatment  of
periodontal tissue in dentistry [120]. A review study concluded
that  metformin  has  anti-aging  and  anti-oxidative  effects  on
PDLSCs [121]. Low amounts of metformin did not affect cell
proliferation  but  hindered  adipogenic  differentiation  and
enhanced PDLSCs’ osteogenic differentiation.  The results  of
this  study  showed  that  metformin  both  increases  osteogenic
differentiation  of  PDLSCs  and  protects  PDLSCs  against
oxidative stress-produced harm, indicating that metformin can
be greatly useful in increasing bone regeneration in the therapy
of periodontitis by PDLSCs [34]. Yang et al. demonstrated that
metformin  could  relieve  oxidative  stress-induced  senescence
by  autophagy and  could,  to  a  degree,  recover  the  osteogenic
potential of PDLSCs [122]. The results of Zhang et al. [123]
revealed  that  metformin  generates  a  suitable  niche  for
periodontal tissue regeneration via stimulating the proliferation
and migration of PDLSCs.

MicroRNAs  (miRNAs)  are  a  new  type  of
posttranscriptional  regulators.  They  are  critical  elements  in
regulating  cell  differentiation  [124].  Inflammatory  cytokines
can  control  miRNAs  and  cause  some  inflammatory  diseases
[125].  Several  types  of  miRNAs  have  been  investigated  in
previous studies. MiR-21 may take part in the promotion of the
osteogenic  differentiation  of  PDLSCs  [126].  Another  study
demonstrated that miR-21 is a mechano-sensitive gene that has
an  indispensable  role  in  the  osteogenic  differentiation  of
PDLSCs  [127].  Yan  et  al.  proved  that  miR-22  enhanced
PDLSC  osteogenic  differentiation  by  suppressing  histone
deacetylases (HDAC) expression [128]. HDAC regulates gene
expression by removing negatively-charged acetyl groups from
the  positively-charged  lysine  on  histone  tails,  tightening  the
interaction  between  histones  and  DNA  and  suppressing  its
access to transcription [129]. HDAC diminished the osteogenic
differentiation  potential  of  the  PDLSCs  under  inflammatory
conditions.  In  conclusion,  HDAC  inhibitors  increased  the
osteogenesis of PDLSCs in vitro and in vivo [32]. On the other
hand, some microRNAs showed adverse effects on periodontal
tissue  regeneration.  For  instance,  miR‐146a  exacerbates
periodontitis by downregulating IL-17 and IL-35 expressions
and proliferates PDLSCs [130]. Besides, miR-132 could hinder
PDLSC osteogenesis [131].

PDLSCs constitutively express the chemokine stromal cell-
derived factor-1 (SDF-1) that plays a crucial role in promoting
cellular  viability  [132],  migration  [133]  and  homing  of  stem
cells  through  signaling  with  its  cognate  receptor,  C-X-C
chemokine receptor type 4 (CXCR4) [134]. According to Feng
et al.  [135], SDF-1 plays a role in the protection of PDLSCs
against  apoptosis  caused  by  oxidative  stress  by  activating
extracellular  signal-regulated  kinase  (ERK)  signaling.  Based
on the results of this study, it is suggested that SDF-1 therapy

is  a  promising  approach  to  promote  PDLSC  survival,  which
may assist in dental tissue regeneration [135]. In another study,
the parathyroid hormone was used in combination with SDF-1.
This  co-therapy  enhanced  proliferation,  migration  and
osteogenic  differentiation of  PDLSCs.  Furthermore,  it  seems
that co-therapy has the potential to promote periodontal tissue
regeneration since it facilitates the chemotaxis of PDLSCs to
the  damaged  site  [136].  Additionally,  SDF-1/Exendin  4  co-
therapy  was  reported  to  have  some  other  positive  effects  on
PDLSC, including increasing ALP activity, mineral deposition
and osteogenesis-related gene expression [137]. In conclusion,
SDF-1  may  promote  periodontal  tissue  regeneration  by  the
means  of  directing  PDLSCs  to  injured  periodontal  tissue.
SDF-1  enhances  the  activation  and  proliferation  of  PDLSCs
and also induces the differentiation of these cells.

Semaphorin  3A  (Sema  3A),  one  of  the  members  of  the
semaphoring  family  secreted  protein,  has  essential  roles  in
developing different tissues, such as blood vessels, peripheral
nerves,  and  skeletal  tissues  [138].  Additionally,  Sema  3A
functions  as  an  osteoprotective  factor  by  increasing  bone
production  and  preventing  bone  resorption  [139].  It  plays  a
vital  role  in  maintaining  the  stem  cell  characteristics  of
PDLSCs.  The  expression  level  of  Sema  3A  was  higher  in
multipotent  human  PDL  cell  lines  compared  to  low-
differentiation  potential  lines,  and  Sema  3A-overexpressing
low-differentiation  potential  PDL  clones  promoted  MSC-
related  marker  expression  and  improved  capacity  to
differentiate  into  osteoblasts  and  adipocytes  [140].

Hypoxia  has  several  effects  on  PDLSCs  mineralization,
osteogenic  potency,  and  paracrine  secretion.  In  hypoxic
conditions,  an  increase  in  ALP  activity  and  Runt-related
protein 2 (RUNX2), Sp7, osteocalcin and osteopontin (OPN)
expression  was  observed  in  PDLSCs  [141,  142].  Moreover,
hypoxia could regulate the expression of RUNX2 in PDLSCs
via hypoxia-inducible factor-1α (HIF-1α) and play an effective
role  in  the  primary  stage  of  osteogenesis  of  PDLSCs  [143].
Zhang et al.  observed an increased 2% O2  PDLSC cell count
and  osteogenic  potential  [144].  Hypoxia  had  a  stimulatory
effect on PDLSC proliferation, osteogenic differentiation, and
migration [145].

Nitric oxide (NO) is a small, diffusible, diatomic, reactive
element with various cellular functions in human cells [146].
NO plays a key role in the proliferation and differentiation of
stem cells. It has been proved that NO is a negative modulator
of stem cell proliferation in physiological concentrations and
initiates cell differentiation [147]. Orciani et al. demonstrated
that the upregulation in NO production was related to increased
alkaline phosphatase activity. This study showed that NO had a
key role in the osteogenesis of stem cells, especially PDLSCs
[148].

Some  researchers  developed  a  new  effective
mineralization-inducing  medium  by  adding  KH2PO4  to  the
solution [149]. Cell Counting Kit-8 (CCK-8) assay suggested
that  1.8  mmol/L  KH2PO4  can  increase  the  PDLSCs
proliferation  in  the  logarithmic  phase  of  growth  [150].

Some  studies  showed  that  tuning  the  settings  of  light-
emitting diode (LED) irradiation, such as wavelength and dose,
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can  significantly  impact  the  proliferation  rate  and
undifferentiated  cells’  osteogenic  differentiation.  The
advantages  of  irradiation  could  be  used  to  regenerate  PDL
utilizing LED as a light source of antimicrobial photodynamic
therapy (aPDT) [151, 152]. High-power, red LED irradiation
increases  the  proliferation  and  eventually  improves  the
osteogenic  differentiation,  mineralization,  and ATP levels  of
PDLSCs  [153].  A  study  by  Chaweewannakorn  et  al.
demonstrated  that  the  PDLSCs  responded  to  different  LED
wavelengths in various ways. 830-nm irradiation demonstrated
better  results  in  improving  proliferation.  Moreover,  630  and
680  nm  wavelengths  stimulated  osteoblastic  differentiation
[154].  In  another  study,  the  results  revealed  that  red  LED
enhanced osteogenic differentiation of the PDLSCs. The real-
time  polymerase  chain  reaction  (RT-PCR)  results  showed
upregulation  of  the  expression  of  osteogenic  genes,  such  as
Bone  sialoprotein  (BSP),  OPN,  Osteonectin  (OCN),  and
RUNX2, by the red LED. Moreover,  red LED at  1,  3,  and 5
J/cm2 stimulates proliferation and osteogenic differentiation of
PDLSCs [155].

Improving  the  osteogenic  potentiality  of  PDLSCs  and
modulating  the  expression  outline  of  growth  factor-linked
genes  are  important  stages  in  tissue  engineering  processes
based on PDLSCs. For example, using continual cell sheets by
preserving cellular junctions, endogenous ECM, and imitating
cellular  microenvironments  with  regard  to  different
mechanical,  chemical,  and  biological  features  may  be
advantageous  for  cell  transplantation.

CONCLUSION AND FUTURE OUTLOOKS

Numerous  factors  need  to  be  considered  for  the
regeneration  of  periodontium.  So  far,  there  is  no  clinical
evidence  for  the  application  of  PDLSCs  for
immunomodulatory  periodontology/medicine.  Evidence
indicates that the periodontal ligament is a replete resource of
MSCs. Despite the apparent high regenerating potentiality of
this tissue, harnessing and utilizing this capability are not easy
for  clinical  applications.  Up  to  now,  oral  and  dental-tissue-
derived stem/progenitor cells have been utilized to study tissue
engineering in small and large animal models to evaluate their
capability  in  preclinical  utilization.  This  study  provides  an
overview  of  the  most  up-to-date  investigations  on  the
characteristics  and  immunomodulatory  features  of  PDLSCs
and  the  recent  interventions  performed  using  these  cells,
focusing  on  cell  survival,  proliferation,  and  differentiation.
Keeping in mind the relationship between age and potency of
PDLSCs,  this  work  also  demonstrates  the  necessity  of
establishing  dental-derived  stem  cell  banks  for  tissue
regeneration  applications.  For  regeneration  of  periodontium,
better understanding of the modes of self-restoration action is
necessary for sufficient regulation of adult stem cell growth in
vitro  to produce cells necessary for various applied purposes
and  regulate  stem  cells  for  differentiating  and  maturating
tissue-specific cell types, as well as wound remedy. In addition,
the  interplay  between  stem  cells  and  the  immune  system  is
necessary, particularly in allogeneic cell populations.
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