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Abstract:

Background:

The application of static compressive forces to periodontal ligament fibroblasts (PDLFs) in vivo or in vitro has been linked to the expression of
biochemical agents and local tissue modifications that could be involved in maintaining homeostasis during orthodontic movement. An approach
used for identifying mesenchymal cells, or a subpopulation of progenitor cells in both tumoral and normal tissues, involves determining the activity
of aldehyde dehydrogenase (ALDH). However, the role of subpopulations of PDLF-derived undifferentiated cells in maintaining homeostasis
during tooth movement remains unclear.

Objective:

This study aimed at analyzing the effect of applying a static compressive force to PDLFs on the activity of ALDH in these cells.

Methods:

PDLFs were distributed into two groups: control group (CG), where fibroblasts were not submitted to compression, and experimental group (EG),
where fibroblasts were submitted to a static compressive force of 4 g/mm2 for 6 hours. The compressive force was applied directly to the cells
using a custom-built device. ALDH activity in the PDLFs was evaluated by a flow cytometry assay.

Results:

ALDH activity was observed in both groups, but was significantly lower in EG than in CG after the application of a static compressive force in the
former.

Conclusion:

Application of a static compressive force to PDLFs decreased ALDH activity.
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1. INTRODUCTION

The  remodeling  of  tooth-supporting  tissues  following
orthodontic movement is closely linked to the metabolism of
osteoblasts  and  periodontal  ligament  fibroblasts  (PDLFs).
When submitted to compressive or tensile forces, these cells

* Address correspondence to this author at Rua Botucatu, 591, cj. 142/143, São
Paulo, SP, Brazil-ZIP 04023-062; Tel: +55 11 5576-4816;
E-mail: lydiamferreira@gmail.com

undergo a mechanotransduction process, whereby they become
capable of expressing intra- and extra-cellular biomechanical
signals [1, 2]. The exact role played by compression has yet to
be  completely  understood  with  respect  to  the  role  of  cell
subpopulations,  particularly  those  of  undifferentiated  cells,
because  there  is  still  no  evidence  for  whether  or  not  using
compressive force could increase the number of cells in these
subpopulations. It has been found that the use of lower levels
of pressure on the periodontal ligament (PDL) could be more
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effective  in  maintaining  the  bone  level,  a  finding  that,  if
confirmed,  would  be  particularly  relevant  for  orthodontic
treatment;  however,  possible  correlations  between  this
observation and the behavior of undifferentiated cells from the
PDL still require investigation [3, 4].

Fibroblasts  are  mature  mesenchymal  cells  that  are
particularly abundant in the connective tissue of every organ.
Therefore,  these  cells  are  the  most  frequently  involved  cell
phenotype “contaminating” several cell culture systems [5]. In
any cell culture, it is not only difficult to apply techniques to
successfully  eliminate  fibroblasts,  but  it  is  also  particularly
challenging  to  distinguish  them  from  mesenchymal  stromal
cells  (MSCs).  Fibroblasts  and  MSCs  have  extremely  similar
morphological  characteristics;  they  both  proliferate  well  and
have  many  identical  cell-surface  markers  [6].  Furthermore,
MSCs lack a specific surface antigen capable of distinguishing
them from fibroblasts. Stro-1, and, more recently, CD146, have
been found to be specific markers for MSCs [7 - 9]. However,
these  markers  seem  limited  to  MSCs  derived  from  bone
marrow  (BM-MSCs)  or  from  renal  tissue,  since  adipose-
derived MSCs (AD-MSCs), for instance, do not display these
markers  [10].  In  spite  of  these  differences,  MSCs  from
different  tissular  origins  possess  very  similar  phenotypic
profiles.  They  usually  express  high  levels  of  mesenchymal
markers, and generally do not express hematopoietic markers
[10,  11].  To  date,  the  most  effective  way  of  distinguishing
MSCs from fibroblasts is to analyze their functional properties;
MSCs  self-renew  and  retain  multipotent  differentiation
capacity, whereas fibroblasts seem more limited with respect to
both of these functional capabilities [6].

In  1999,  Storms  et  al.  [12]  characterized  an  aldehyde
dehydrogenase–bright (ALDH[br]) population in the blood of
the  human  umbilical  cord,  enriched  for  hematopoietic
progenitors. By employing this technique, stem or progenitor
cells were characterized in human bone marrow and umbilical
cord blood.

Aldehyde dehydrogenase (ALDH) is a cytosolic enzyme,
participating  in  the  intracellular  oxidation  of  aldehydes,  and
converts retinol into retinoic acid [13 - 15]. An approach used
for  identifying  mesenchymal  cells,  or  a  subpopulation  of
progenitor  cells,  in  tumoral  and  normal  tissues,  involves
determining the activity of this enzyme. ALDH acts mainly in
the  final  phase  of  cell  differentiation  [14],  and,  according  to
Moreb  et  al.  [16],  its  activity  can  be  understood  as  the
percentage of viable and intact cells positively marked by flow
cytometry.

The aim of this study was to analyze the effect of applying
a static compressive force to PDLFs on the activity of ALDH
in these cells.

2. MATERIALS AND METHODS

2.1. Study Design

This  study  was  approved  by  the  Research  Ethics
Committee of the Federal University of São Paulo (UNIFESP;
approval no. 411.270), and was conducted in compliance with
both the guidelines of Resolution no. 196/96, National Health
Council,  Ministry  of  Health  (Brazil),  and  with  the  Helsinki

Declaration  of  1975,  as  revised  in  2008,  on  the  ethical
standards  for  human experimentation.  All  of  the  participants
signed  a  free  and  informed  consent  agreement  before  taking
part in the study.

Ten  patients  aged  18  to  30,  both  male  and  female,  non-
smokers,  without  any  history  of  systemic  disease  or  use  of
medication, and with completely impacted third molars were
selected. Two teeth were extracted from each patient (20 teeth
total), and the fibroblasts from their PDL were harvested and
expanded in culture.

2.2. Harvesting of PDL

The extracted teeth were placed in 15-mL sterile  conical
tubes  (Corning,  MA,  USA)  containing  5  mL  of  transport
solution  consisting  of  HBSS,  and  complete  alpha-MEM
supplemented  with  5,000  IU  of  penicillin  +  10,000  μg  of
streptomycin + 25 μg of amphotericin-B (Gibco, Grand Island,
NY, USA).

The  teeth  were  washed  four  times  with  HBSS  (Sigma
Aldrich,  St.  Louis,  MO,  USA)  and  antibiotics  (5,000  IU  of
penicillin  +  10,000  μg  of  streptomycin  +  25  μg  of
amphotericin-B;  Gibco,).  PDL  fragments  were  obtained  by
scraping the middle third of each tooth root.

The collected fragments were washed sequentially in four
15-mL  conical  tubes  (Corning)  containing  4  mL  of  HBSS
solution  supplemented  with  the  same  composition  of
antibiotics and antifungals described above, for 30 s each tube.
The  periodontal  tissue  was  then  transferred  into  a  15-mL
conical  tube  containing  5  mL  of  alpha-MEM,  1  mg/mL  of
Type II collagenase (Gibco), and 1 mg/mL of dispase (Gibco),
under heating (37°C), and then shaken using a TE-420 orbital
shaker  for  30  minutes  (Tecnal  Equipamentos  Científicos,
Piracicaba,  SP,  Brazil).  Next,  5  mL  of  alpha-MEM  (Lab
Biotecnologia, São Paulo, SP, Brazil) supplemented with 10%
bovine fetal serum (Gibco) was added to neutralize the action
of  collagenase  and  dispase  enzymes.  The  supernatant  was
discarded,  and  the  remaining  solution  was  transferred  to
another  15-ml  tube  and  centrifuged  (Excelsa  II;  Fanem,
Guarulhos,  SP,  Brazil)  at  100  g  for  6  minutes,  at  room
temperature.

The  supernatant  was  discarded  and  the  cell  pellet  was
resuspended in 5 mL of complete alpha-MEM culture medium.
The  number  of  cells  was  counted  using  an  automatic  cell
counter  (Countess;  Invitrogen,  Seoul,  Korea).  The  solution
containing  the  PDL cells  was  kept  in  a  25  cm3  culture  flask
(Corning) in a CO2 incubator (Elite II; Revco, Rio de Janeiro,
RJ,  Brazil)  at  37°C,  with  5%  CO2  and  95%  O2.  The  culture
medium was changed every 48 hours for an average of 20 days,
until  a  confluency  of  80% was  reached.  The  cells  were  then
trypsinized  using  0.25%  trypsin  with  0.02%  EDTA  (Sigma
Chemical, Saint Louis, MO, USA) and subcultured. After the
fifth  passage,  the  cells  were  cryopreserved  at  –130°C,  at  a
density of 1 x 106 cells/mL in alpha-MEM, supplemented with
50%  inactivated  FBS,  0.1%  bovine  serum  albumin  (Sigma
Chemical, Saint Louis, MO, USA) and 10% dimethyl sulfoxide
(Sigma Chemical).
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2.3. Study Groups

At  a  density  of  2  x  105  cells/mL,  the  fibroblasts  were
seeded  onto  the  center  of  each  well  of  a  six-well  plate  and
distributed  into  the  following  groups:  control  group  (CG),
where  fibroblasts  were  not  submitted  to  compression,  and
experimental group (EG), where fibroblasts were submitted to
a  static  compressive  force  of  4.0  g/cm2.  Both  groups  were
analyzed  after  6  hours,  and  all  of  the  experiments  were
performed  in  triplicate.

2.4. Compressive Force Application

A model similar to that proposed by Nishijima et al. [17]
and  Nakajima  et  al.  [18]  was  used  to  produce  compression.
Acrylic cubic containers measuring 2 x 2 x 2cm were placed
over the cells in the center of each well of the culture plate, and
stainless steel spheres were placed in the containers to produce
a force corresponding to a mass of 16 g. A concentration of 2 x
105 cells/well diluted in 200 μL of culture medium was seeded
onto  the  center  of  each  well  of  a  six-well  plate,  where  it
remained  for  10  minutes  for  fixation,  and  the  volume  of  the
culture  medium  in  each  well  was  completed  immediately
afterwards,  until  it  reached  3.0  mL.  The  cells  were  pre-
incubated for 6 hours in a culture medium containing 10% fetal
bovine serum, and only then was the compression applied to
the cells for 6 hours in an incubator. After application of the
compressive force, the cells were trypsinized and prepared for
flow cytometry analysis.

2.5. ALDH Activity

The Aldefluor kit (Stemcell Technologies, Vancouver, BC,
Canada)  was  used  to  stain  the  cells  with  ALDH.  This  is  a
reagent kit that is used to identify human cells that express high
levels  of  this  enzyme.  The  activated  reagent,  BODIPY-
aminoacetaldehyde  (BAAA),  is  a  fluorescent  non-toxic
substrate  for  ALDH,  which  freely  diffuses  into  intact  and
viable  cells.  BAAA is  converted into  BODIPY-aminoacetate
(BAA)  in  the  presence  of  ALDH,  and  BAA is  then  retained
inside the cells. The amount of fluorescent reaction product is
proportional to the ALDH activity in the cells, and is measured
using  a  flow  cytometer.  A  specific  inhibitor  of  ALDH,
diethylaminobenzaldehyde  (DEAB),  is  used  to  control  for
background  fluorescence.  The  cells  were  resuspended  at  a
concentration of 1 x 106 cells/mL, using the buffer solution of
the kit. Two 5-mL tubes for flow cytometry were separated and
identified  as  test  and  control.  In  the  control  tube,  5  µL  of
DEAB  was  added  to  the  tube,  and  the  previously  separated
cells  were  placed  at  the  previously  described  concentration.
Subsequently, 5 µL of the homogenized ALDH solution was
added, and 500 µL of this solution was quickly collected and
dispensed into the control tube. The tubes were then incubated
in the dark for 40 minutes at 37°C. After incubation, the tubes
were centrifuged at 200 g for 5 minutes, the supernatant was
discarded, and the cultures were resuspended in 300 µL of the
buffer solution of the kit. The specimens were distributed onto
a 96-well plate that is specific for the Guava flow cytometer,
and then analyzed.

2.6. Flow Cytometry Analysis

Flow cytometry was used to assess the cells marked with
the ALDH enzyme. The test was performed in the Guava flow
cytometer  (easyCyte  HT;  Luminex,  Austin,  TX,  USA),  and
analyzed using InCyte Software (Luminex).

2.7. Statistical Analysis

The  non-parametric  Wilcoxon  Mann-Whitney  test  was
used to analyze the data. The level of significance adopted was
5%.

3. RESULTS

ALDH  activity  was  observed  in  both  groups,  but  was
significantly lower in EG than in CG after the application of a
static compressive force to the former. Fig. (1) shows the data
obtained from one of the donors enrolled in the study.

All of the experiments were performed in triplicate, and the
counts of fibroblasts marked with ALDH, as determined in the
cytometry analysis, are represented in Table 1.

4. DISCUSSION

Orthodontic  mechanotransduction  is  the  mechanism  by
which  periodontal  cells  convert  mechanical  stimuli  into
electrochemical activity during induced tooth movement [19].
This form of sensory transduction is responsible for a series of
physiological  senses  and  processes  in  the  body,  including
proprioception,  touch,  balance and hearing [20],  and induces
the production and release of molecules capable of regulating
and normalizing local bone homeostasis [21]. The specific cell
responses to mechanical signals must be understood in order to
interpret  this  mechanism  appropriately,  and  thus  enable
reducing  bone  loss,  promoting  differentiation  of  osteogenic
cells, and increasing bone formation [22].

The  mechanotransduction  mechanism  basically  involves
the conversion of mechanical signals into electrical or chemical
signals. In this process, ion channels mechanically blocked as a
result of pressure or movement lead to a change in specialized
sensory  cell  excitability  and  sensory  neurons  [22  -  25].
Stimulation  of  a  mechanoreceptor  allows  mechanically
sensitive  ion  channels  to  open  and  produce  a  transduction
current  that  alters  cell  membrane  potential  [26,  27].

However,  owing  to  the  lack  of  instruments  capable  of
investigating the response of periodontal ligament cells in vivo
and  in  situ,  this  issue  remains  unsolved;  therefore,  different
types of in vitro models have been proposed for this purpose.
The  static  compressive  force  model  used  in  this  study  to
analyze  cell  behavior  in  vitro  consisted  of  acrylic  cubic
containers measuring 2 x 2 x 2 cm and containing steel spheres
to create a compressive load directly onto the cells. The same
concept was used by Nakagima et al. [18], who demonstrated
the possibility of studying the effect of compressive forces in
vitro, by simulating physiological and pathological conditions.
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Fig. (1). Flow cytometry analysis of ALDH activity in periodontal ligament fibroblasts. In (A), the selected cells are in the R1 region. In (B), note that
the cells are displaced into the R2 region selected for the ALDH inhibitor diethylaminobenzaldehyde (DEAB, negative control). In (C), control group,
and in (D), experimental group, note that cells are displaced into the R2 region, and also note the presence of ALDH+ cells in both groups.

Table 1. Mean and median percentages of ALDH+ periodontal ligament fibroblasts in the study groups after application of a
static compressive force of 4 g for 6 hours, as assessed by flow cytometry.

Donor Control group Experimental group
1 1.45 2.20
2 2.22 2.77
3 2.41 0.90
4 7.40 3.08
5 4.67 2.92
6 5.15 0.49
7 9.60 4.72
8 6.00 4.17
9 6.37 0.79
10 8.06 1.81

Mean 5.33 2.38
Median 5.58 2.49

Standard deviation 2.69 1.42
p-value 0.004

Wilcoxon Mann-Whitney test (p < 0.05)

C D

A B
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The compressive force of 4g/cm2  for 6 hours used in the
present study was determined after performing a previous pilot
study  using  the  same  custom-built  force  device  with  a  wide
range of force/time combinations. The criteria used in this pilot
study  were  the  highest  cell  viability  and  lowest  rate  of  cell
necrosis and apoptosis, both of which were analyzed by flow
cytometry.  Therefore,  the  4g/cm2  /  6  hour  combination  was
found  to  be  the  intensity  and  duration  of  force  capable  of
stimulating cellular change without causing damage, and this
combination  was  assumed  to  be  equivalent  to  the  in  vivo
conditions occurring during the application of light orthodontic
force during tooth movement.

Evidence  that  undifferentiated  mesenchymal  cells  are
present  in  periodontal  tissues  was  first  provided  by  the
histological study conducted in vivo by McCulloch et al. [28].
The  complex  series  of  events  involved  in  periodontal
regeneration include recruitment of locally derived progenitor
cells,  which  can  subsequently  differentiate  into  periodontal
ligament-forming  cells,  mineral-forming  cementoblasts  or
bone-forming osteoblasts. Trubiani et al. [29] observed that the
periodontal  ligament  can  be  an  easily  accessible  source  of
autologous stem cells, which have a high expansion capacity,
and which are able to differentiate into osteogenic cells capable
of colonizing a recipient site and expanding when connected to
a  bio-compatible  scaffold.  Hence,  the  use  of  PDL-MSCs  for
generating graft biomaterials has been suggested as an option
for bone tissue engineering in regenerative dentistry [30].

Choi  et  al.  [31]  used  immunophenotyping  and
fluorescence-activated  cell-sorting  analysis  to  identify
undifferentiated  subpopulations,  and found that  certain  MSC
markers  (CD44,  CD73,  CD90,  CD146,  and  CD166)  were
heavily expressed in human adult  dental  pulp cells  (hDPCs),
periodontal  ligament  stem  cells  (hPDLSCs)  and  gingival
fibroblasts (hGFs). On the other hand, ALDH, another marker
of  cell  differentiation  in  tumoral  cells,  has  been  used  to
characterize  undifferentiated  healthy  cells  [32  -  35].

Recently,  major  new  hypotheses  have  intensified  the
search  for  a  more  practical  way  of  identifying  stem  cells.
According to the concept of stem cell plasticity, somatic stem
cells  are  thought  to  regenerate  and  repair  different  types  of
tissues.  Another  hypothesis  is  that  cancer  behaves  like  an
organ,  with  its  own  sustaining  cancer  stem  cells  (CSC).
Stemness markers or genes are widely sought after. For years
now,  ALDH  has  been  known  to  be  highly  expressed  in
hematopoietic  stem  cells  (HSC)  [36,  37],  and  to  provide
protection  against  alkylating  agents  of  the  oxazaphosphorine
family, such as cyclophosphamide and its derivatives [38 - 41].
Determining ALDH activity as the core of a flow cytometry-
based method to sort hematopoietic progenitors has paved the
way to study high ALDH activity as a marker for stem cells in
different tissues [42].

As  an  ALDH  inhibitor,  DEAB  was  used  as  a  negative
control in the Aldefluor assay, and was originally viewed as a
specific  inhibitor  of  the  ALDH1  family;  hence,  the  ALDH
enzyme  activity  measured  with  this  assay  was  assumed  to
reflect  the  expression  of  ALDH1  isozymes  [43].  However,
recent data indicate that DEAB is not a specific inhibitor when
assayed  in  vitro  versus  the  ALDH1,  ALDH2,  and  ALDH3

family  members  [44].  Several  studies  have  correlated
ALDH(br) cells, as assessed using the Aldefluor reagent, with
cells  staining  positive  with  ALDH1-targeting  antibodies  in
various  tissues  and  cell  populations,  such  as  human  breast
epithelium [45] and MSCs [46]. However, many reports have
failed to clarify the question of isozyme specificity due to the
limited information about this specificity in both the Aldefluor
assay, and in assays using ALDH-targeting antibodies.

ALDH  activity  was  used  in  the  present  study  as  a
functional  marker  for  undifferentiated  periodontal  ligament
fibroblasts,  aiming to  gain  a  better  understanding of  the  role
played  by  this  subpopulation  of  cells  in  the  homeostasis  of
tooth movement.  Some ALDH activity was observed in both
groups, but it was significantly higher in CG than in EG, where
a  compressive  force  was  applied.  This  outcome  shows  that
there  is  a  decrease  in  ALDH  activity  even  when  the
compressive force is within a range compatible with minimum
damage  to  fibroblasts,  i.e.,  it  demonstrates  that  compressive
forces cause functional damage, irrespective of whether or not
the cell viability rate remains high.

Although  this  study  successfully  identified  an  ALDH+
subpopulation  in  PDL  fibroblasts,  the  exact  mechanism
whereby the observed decrease occurred after applying force
remains to be investigated. Furthermore, this study examined
the expression of ALDH in an unselected population of PDL
fibroblasts,  as  opposed  to  an  exclusively  ALDH+
subpopulation. Therefore, further investigation is warranted to
address  these  issues,  and  further  elucidate  how  functional
markers  such  as  ALDH  and  its  isoforms  can  contribute  to
improving the knowledge of mechanotransduction.

CONCLUSION

The continuous static compressive force used in this study
was  found  to  decrease  the  counts  of  human  periodontal
ligament  fibroblasts  marked  for  ALDH.
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