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Abstract: Endocanalar posts are necessary to build up and retain coronal restorations but they do not reinforce dental roots. It was
observed that the dislodgement of post-retained restorations commonly occurs after several years of function and long-term retention
may be influenced by various factors such as temperature changes. Temperature changes, in fact, produce micrometric deformations
of post and surrounding tissues/materials that may generate high stress concentrations at the interface thus leading to failure.

In this study we present an optical system based on the projection moiré technique that has been utilized to monitor the displacement
field of endocanalar glass-fibre posts subjected to temperature changes.

Measurements were performed on forty samples and the average displacement values registered at the apical and middle region were
determined for six different temperature levels. A total of 480 displacement measurements was hence performed.

The values of the standard deviation computed for each of the tested temperatures over the forty samples appear reasonably small
which proves the robustness and the reliability of the proposed optical technique. The possible implications for the use of the system
in the applicative context were discussed.
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INTRODUCTION

Endodontically-treated teeth may run a higher risk of failure than vital teeth [1, 2]. Although posts are necessary to
retain coronal  build-up materials,  they do not  reinforce roots  and may even weaken them through loss of  radicular
dentin  necessitated  by  post-space  preparation  [3  -  5].  Some  authors  asserted  that  posts  may  interfere  with  the
mechanical resistance of treated teeth thus leading to an increased risk of damage for residual tooth structure [6 - 10].

Some studies have reported that fiber-reinforced resin posts provide lower retention in comparison with metal posts
[11, 12]. Conversely, other studies reported no significant differences between the retention of fiber-reinforced resin
and  metal  posts  [13,  14].  Among  the  fiber-reinforced  resin  posts,  glass-fiber  posts  play  a  role  of  predominant
importance. They are composed of glass fibers, inorganic filler and a resin matrix and are usually luted with a resin
cement to increase their retention and improve the mechanical performance of the restored teeth [15, 16].  Investigations
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on the effects of different combinations of irrigants and sealers on the shear bond strength at the post-dentine interface
have been previously carried out [17, 18]. Finite element models reproducing the structural response of endodontically
treated teeth were also developed [19, 20]. From the clinical point of view, it was observed that the dislodgement of
post-retained restorations commonly occurs after several years of function, and long-term retention may be influenced
by various factors such as temperature changes and dynamic mechanical loading [9, 21 - 23]. In particular, temperature
changes produce micrometric deformations of post and adjacent tissues/materials (ATM). When thermal properties of
the latter ones significantly differ from those of post, temperature changes may originate high stresses at the post/ATM
interface that can lead to failure.

Generally  speaking,  the  interfaces  between  materials  with  different  physical  properties  such  as  the  thermal
properties,  represent  areas  of  weakness  as  local  discrepancies  influence  stress-strain  distribution  [8].  A  number  of
studies are available in the literature where the thermal properties of different dental materials are reported [24]. Some
of them focused on the measurement of the thermal expansion coefficient [25 - 27], others on thermal conductivity [24,
28, 29], others on thermal diffusivity [29 - 31] etc. In general, the interaction between two bodies put in contact and
subjected to thermal loading is the result of complex phenomena that depend not only on the specific values of the
thermal properties but also on the way the thermal properties interact one each other both in stationary and transient
conditions. Developing a theoretical model capable of reproducing the structural response of bodies put in contact and
subjected to thermal loading is a very difficult task. The models currently available in the literature refer to simplified
conditions  and  geometries  that  are  very  far  from  those  actually  occurring  in  the  practice.  In  such  a  context,  an
experimental  technique  capable  of  monitoring  the  displacement  field  produced  by  a  thermal  load  is  of  paramount
importance not only to assess the structural behavior of the system but also to identify all the possible dental materials
that can be put in contact and utilized to fabricate interfaces that, in the presence of thermal loadings, do not undergo to
large stress values.

In this article we present an optical system based on the projection moiré technique that allows the displacement
field of endocanalar glass-fibre posts subjected to thermal loading to be reconstructed with high accuracy. Projection
moiré, the basic optical technique previously utilized with success to contour the shape of objects [32, 33] as well as to
analyze the displacement field of industrial components under different boundary and loading conditions [34 - 37] was
properly implemented in an ad hoc designed optical set-up aimed at monitoring the displacements of endocanalar posts
subjected to temperature changes. The displacement of forty samples was measured. The rather low values of standard
deviation prove the reliability of the proposed experimental  technique. The possible implications for the use of the
system in the applicative context were discussed.

MATERIALS AND METHODS

Experimental Set-up

The  optical  set-up  utilized  in  the  study  is  articulated  in  two  principal  branches:  the  first  one  includes  different
optical components and is devoted to the projection of structured, collimated and coherent light onto the sample surface;
the second one includes only a CCD camera and is devoted to the acquisition of the projected patterns of lines. All the
components of the projection branch, i.e. the laser source, the microscope/pinhole system, the lens 1, the grating, the
lens 2, the iris and the lens 3, are aligned with the projection axis (highlighted in red, (Fig. 1) while the optical axis of
the CCD camera, that is the only component of the acquisition branch, is aligned with the acquisition axis (highlighted
in blue, (Fig. 1). CCD camera is equipped with a long working distance objective. The angle ϑ made by the projection
axis and the acquisition axis utilized in the study was 20°. The laser source (35 mW, He-Ne, Melles-Griot, Rochester,
NY,  USA)  generates  a  coherent  and  polarized  light  beam  that  goes  through  the  microscope/pinhole  system.  The
microscope expands the beam while the pinhole removes all the noise effects of the parasitic diffraction phenomena
produced during the expansion. The exit pupil of the pinhole is located at the focal distance FD1 = 200 mm of the lens 1;
with this arrangement, the spherical wave-fronts impinging the lens are converted into planar wave-fronts and hence the
light  beam coming out  from the  lens  is  collimated.  This  beam first  passes  through a  Ronchi  ruling with  a  pitch of
p=84.67 µm and then through the lens 2 with a focal distance FD2 = 300 mm (Fig. 1). In the focal plane of this lens, the
Fourier transform of the light wave-front diffracted by the grating creates. By changing the aperture of the iris - located
just in the focal plane of lens 2 -, to select the diffraction orders 0 and one of two orders ±1, a sinusoidal carrier can be
produced with the projected grating pitch. The iris is located not only in the focal plane of lens 2 but also in that of lens
3 which is characterized by a focal distance FD3 = FD2 = 300 mm. Therefore, the light beam coming out from the iris is
collimated by the lens 3 and the collimated wave front so created and carrying the filtered spectrum of the grating is
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finally projected onto the surface of the endocanalar post (Fig. 1). The patterns of lines projected on the sample surface
are acquired by a CCD camera. By equipping the camera with a long working distance objective, the acquired field of
view was as large as approximately the post length. A heat gun placed in front of the sample was utilized to blow hot air
on the  sample  surface.  A thermocouple  located  just  in  the  vicinity  of  the  post  surface  lapped from the  hot  air  was
utilized to monitor the sample temperature (Fig. 1).

Fig. (1). Schematic (a) and assembly view (b) of the optical set-up utilized to monitor the displacement field of the endocanalar post
subjected to thermal loading. (c) Dimensions of the tested samples.

In order to measure the sample displacement during the heating process, by means of the above described optical
set-up, two procedures must be carried out: the calibration and the processing of the acquired images. It is worthy to
note  that  the  experimental  set-up  above  described  allows  the  sample  geometry  to  be  contoured,  therefore  the
displacement field produced by the thermal loading will be calculated as the difference between the sample contour at a
given temperature and that at the environment temperature.

Calibration Procedure and Processing of Images

The calibration procedure requires to project patterns of lines - generated with the projection branch of the optical
set-up described above - onto the surface of a reference plane (indicated in Fig. 1a) with a dashed red line) which is the
plane with respect to which the depth of all the acquired points of the sample is measured. The acquired images of the
projected  lines  are  then  processed  to  extract  the  phase  map.  To  this  purpose,  the  fast  Fourier  transform  is  first
calculated, and hence, in the Fourier space, the frequency at which the maximum intensity of the power spectrum is
identified.  After  implementing  band-pass  filters,  the  inverse  Fourier  transform  is  computed  and  from  the  obtained
filtered image, through the in-quadrature method, the phase map ΦREF(x,y) is extracted. At this point, the reference plane
can be removed and replaced by the sample. Again, the patterns of lines are projected onto the sample surface (Fig. 2a)
and,  adopting the same procedure described above,  the filtered image (Fig.  2b)  and the phase map (Fig.  2c)  of  the
sample ΦSAMPLE(x,y) is extracted. The total phase ∆ΦTOT(x,y) can be hence computed as:
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The height z(x,y) of each point of the sample with respect to the reference plane can be calculated as:

(2)

where the sensitivity ∆S is a quantity depending on the set-up geometry/arrangement and is given by ∆S = p/sin ϑ.
In the specific case, it is ∆S = 247.55 µm/fringe.

Fig. (2). (a) Lines projected onto the sample surface. (b) Pattern of the projected lines after the filtering process. (c) Phase of the
specimen @ Tenv=18°C (environment temperature).
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Experiments

Forty samples, 25 mm long with a 6° conicity angle (Surgi post Multi Conical, Miromed s.r.l., Lainate (MI), Italy),
were tested. The samples are shaped as a frustum of cone, the larger base having a diameter of 3.12 mm, the smaller one
of 0.5 mm (Fig. 1c). By means of the optical set-up the post geometry was first acquired at environment temperature Tenv

=  18  °C.  Then,  by  using  a  heat  gun  placed  in  front  of  the  sample,  hot  air  was  blown  on  the  sample  surface  thus
increasing  its  temperature.  The  increase  of  the  temperature  produces  an  inflection  of  the  sample  towards  the  side
opposite to where the heat gun is located (Fig. 3a). The post geometry was hence contoured, - i.e. the coordinate z(x,y)
(with  respect  to  the  reference  plane)  of  each  point  of  the  post  surface  was  determined,  -  at  the  following  six
temperatures Tpost: 40, 60, 80, 100, 120 and 150 °C. The acquisition was done as soon as the thermocouple measured the
above mentioned temperatures Tpost. Between two consecutive acquisitions, a 10-minute time interval was waited so that
the sample temperature, at the beginning of the new acquisition, is equal to Tenv. In order to make sure that no residual
deformations were left by thermal loading in the currently tested post, a new image of the post was recorded after the
10-minute temperature recovery interval. This image was digitally superimposed on the reference image of the same
post and the corresponding pattern thus generated was carefully analyzed. Since no moiré fringes were seen to form, we
concluded that in the present experiments there was never residual deformation between two consecutive measurements
performed on the same post.

Let M and T be two physical points, placed in the middle and tip section of the sample surface before blowing hot
air and M’ and T’ the same points after the temperature reaches the value Tpost (Fig. 3a). If z(xM,yM)Tpost and z(xT,yT)Tpost are
the heights of the post in correspondence of the points M and T, respectively, at the temperature Tpost, and z(xM,yM)Tenv

and  z(xT,yT)Tenv  are  the  heights  of  the  same points  at  the  environment  temperature  Tenv,  the  displacements  δM  and  δT

experienced by these two points at the temperature Tpost can be computed as:

(3)

For each of the six hypothesized values of Tpost, the displacements δM and δT averaged over the forty samples and the
standard deviations were computed. A total of 2 (number of points (M and T) where the displacement was measured) ×
6 (number of considered temperature levels) × 40 (number of tested samples) = 480 measurements were carried out.

RESULTS AND DISCUSSION

Increasing values of the (average) displacement δM and δT were measured for increasing levels of temperature Tpost

(Fig. 3b, c). In particular, for a fixed temperature, δT is always greater than δM. This is consistent with the physics of the
problem.  The  conical  post  behaves  as  a  cantilever  beam clamped  on  the  larger  base,  therefore  any  inflection  (that
produces the rotation of the sample sections) of the sample leads to increasing displacement values as we move from the
base towards the post tip. The sign of the measured displacement is also consistent with our expectations. In fact, the
hot  air  blown  by  the  heat  gun  produces  a  non-uniform  temperature  field  where  the  temperature  of  the  post  fibres
decreases as we move from the fibres closer to the heat gun (e.g.  the fibre including the points M and T, Fig. (3a)
towards those more far (e.g. the fibre including the points Q and R, (Fig. 3a). Therefore, the fibres closer to the heat gun
will experience a larger elongation compared to those more far and this leads the post to inflect on the side opposite to
where  the  heat  gun  is  located.  A  displacement  with  a  sign  opposite  to  that  found  in  the  experiments  would  mean,
obviously, that the inflection takes place in the side opposite to the one shown in Fig. (3a).

The  proposed  technique  presents  some  limitations.  First  of  all,  the  processing  of  the  acquired  images  is  not
automatic and the user has to make a number of choices such as the shape and the dimension of the band pass filter to
be implemented in the Fourier space. A possible strategy that can be adopted to overcome this limitation consists in
performing a large number of experiments on a wide variety of posts (or other dental materials) and finding, for each
tested material, the optimal processing parameters; therefore, these parameters can be implemented in ad hoc routine
that automatically executes the processing of the acquired images hence limiting the user intervention. Second, the
technique requires a thorough and time-expensive calibration process that can take two to five hours. However, once the
calibration process was terminated,  the set-up can be utilized for  measuring the displacement of  a  large number of
samples. For example, to measure the displacements of all the forty samples analyzed in this study, calibration was done
once and for all.
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Fig. (3). Due to the thermal loading, the sample experiences an inflexion and the points T and M are subjected to displacements δT

and δM, respectively (a). Average values and standard deviation of the displacements measured at points T (b) and M (c) for the
different temperatures Tpost.
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In  spite  of  these  limitations,  as  stated  above,  the  displacement  values  measured  with  the  proposed  system  are
consistent with the physics of the problem and with our expectations. Furthermore, the values of the standard deviation
computed, for each of the tested temperature Tpost, over the forty tested samples appear reasonably small thus indicating
the  rather  good  reliability  of  the  proposed  optical  technique.  These  values  of  standard  deviation  can  certainly  be
explained with: (i) the differences intrinsically present in the resin matrix or in the glass fiber orientation of the different
tested samples; (ii) the positioning errors committed every time a sample was removed and replaced by another one. As
demonstrated in a previous study [36] the projection moiré technique has the potentiality of providing results with an
accuracy  of  the  order  of  1/500  of  the  sensitivity  ∆S  of  the  system which  means,  in  this  case,  about  half  a  micron.
Furthermore, the technique appears very suited to monitor the displacement field in a wide range of dimensions that
goes from some microns [36, 37] to meters [32, 38].

It is worthy to note that the issue of identifying the possible materials that can be utilized to fabricate interfaces
subjected to temperature changes cannot be addressed by simply determining the thermal expansion coefficient [29]. As
stated above, the stress state that creates at the interface depends on different thermal properties as well as on the way
they interact mutually. A possible application of the proposed optical set-up consists in implementing it on different
samples,  all  shaped with  a  specific  geometry,  made  from different  dental  materials  and  in  comparing  the  resulting
displacement fields. Those materials that exhibit comparable displacement values can be put in contact and utilized to
fabricate interfaces. Any possible variation of the temperature field, in fact, will produce similar displacement fields in
the two materials thus generating negligible thermal stress values.

Another important advantage of the proposed optical system is that the monitoring of the displacement field occurs
via  a  CCD camera  which  can  acquire  images  with  high  frequency.  This  can  be  properly  exploited  to  describe  and
evaluate the displacement field and, hence, the stress state, not only in the stationary but also in the transient conditions.

CONCLUSION

We presented an optical system that has been utilized to determine the displacement field in endocanalar glass-fibre
posts subjected to temperature changes. Measurements were performed on forty samples and the average displacement
values registered at the apical and middle regions of the post were determined for six different temperature levels. The
rather small values of standard deviation that can be justified with arguments independent of the optical system are a
proof of the good reliability of the proposed optical technique. The proposed technique can be utilized to identify all the
dental materials that can be utilized to fabricate interfaces subjected to thermal loading.
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