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Abstract:

Purpose:

This study compared the influence of implant design (cylindrical and conical) in the load transfer on bone surrounding 13mm and
7mm length implants under simulated occlusal loading, using photoelastic analysis.

Method:

Dental implants of 4mm diameter were divided into four groups, which varied in length and design: Group 1- standard (13 mm)
cylindrical implant; Group 2 - standard conical implant; Group 3 – short (7 mm) cylindrical implant, and Group 4 - short conical
implant. After the inclusion of the implant models in a photoelastic resin, they were subjected to a static load of 100 N. The lengths
of the fringes that were generated were measured in three portions since the implants body: crestal, central and apical portion, parallel
to the implant long axis. Furthermore, the entire extension area of dissipation of force was measured. Data were analyzed by one-way
ANOVA (α = 0.05).

Results:

Lower stress was observed at the crestal bone in groups 2 and 4, while the stress levels in groups 1 and 3 were higher with significant
differences compared to the other groups (p<0.05).

Conclusion:

The total amount of stress transmitted to the bone was not affected by implant length under axial loading condition, but changed in
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relation to the implant design with respect to the concentration of the fringes, which corresponded to the load distribution, with even
more dissipation by conical implants.

Keywords: Biomechanics, Dental implants, Photoelasticity analysis, Short implants, Stress distribution.

INTRODUCTION

Alveolar bone atrophy is considered one of the main factors affecting the placement of dental implants with the aim
of achieving adequate restoration [1 - 3]. The presence of insufficient bone volume may require the adoption of bone
grafting procedures in order to increase the available bone [4]. Commonly, bone graft materials are used to increase the
posterior volume of the pneumatized maxillary sinus via lateral or crestal sinus floor augmentation [5 - 7]. In atrophic
mandibles, bone volume in the posterior areas is often not sufficient to allow implant placement, due to the presence of
the  inferior  alveolar  nerve  which  must  be  preserved.  Vertical  bone  augmentation  in  atrophic  mandibles  has  been
previously  described in  the  literature  [8,  9],  however,  there  is  a  lack of  consensus  about  which is  the  best  or  most
predicable surgical protocol. Moreover, most bone grafting procedures present complications and adverse sequelae,
which might jeopardize the postoperative period and affect the success of the procedures themselves [4, 10].

Short  implants  (less  or  equal  than 8  mm long)  were  introduced in  clinical  practice  to  obviate  the  need of  bone
grafting  procedures  in  sites  with  reduced  bone  volume  [11].  Clinical  outcomes  of  the  use  of  short  implants  were
evaluated in several systematic reviews of the literature [5, 12, 13]. The success and survival rates of such restorations
were comparable with those reported in the previous studies on standard length implants although the follow-up time
for short implants is slightly shorter than for longer implants [5, 12, 13].

Despite  consideration  of  the  adequate  clinical  performance  of  short  implants,  the  stress  distribution  to  the
surrounding bone when a masticatory load is applied should be considered in predicting the success in long-term. Many
implant designs have been introduced to optimize bone and soft tissue conditions under occlusal load that consists of
applied axial and oblique direction of compression, tension, and torque. These macroscopic geometric characteristics
have  helped  to  distribute  applied  forces  along  the  implant-tissue  interferences  [14].  Major  stresses  occur  around
implants during mastication. If these stresses increase to higher levels they may lead to bone resorption [15]. To prevent
complications like this, it is necessary to understand where the maximum stresses occur during mastication, around the
implants [16].

Finite element simulations were used to describe the characteristics of stress distribution on surrounding bone when
a load was applied to simulated short implants [17, 18]. Other simulations can be used to analyze the biomechanical
performances of an implant. Photoelastic simulations have the advantage of presenting situations more similar to reality
compared to computerized ones [19 - 21].

Therefore, the aim of the present study was to assess, using photoelastic evaluation, the stress distribution patterns
on single short implants compared to a standard length fixture with different designs (cylindrical and conical).

MATERIALS AND METHODOLOGY

Sample Preparation and Characteristics

Photoelastic  models  were  generated  from Araldite  GY 279 photoelastic  resin  (Huntsman,  Everberg,  Germany),
according to the manufacturer’s instructions for polymerization. Models were 45 mm high, 45 mm wide and 25 mm
deep. To minimize the stress due to implant insertion, the fixtures were incorporated during polymerization. The stress
due to the presence of the implant in the model was confirmed using a circular polariscope.

Two different implant designs (conical and cylindrical)  with the same implant surface topography (Implacil  De
Bortoli, São Paulo, SP, Brazil) were compared in this investigation: standard cylindrical implant (group 1); standard
conical implant (group 2); short cylindrical implant (group 3); and short conical implant (group 4). The length of the
standard and short implants was 13 mm and 7 mm, respectively, with all implants being 4 mm in diameter (Fig. 1). A
titanium  straight  prosthetic  abutment  was  placed  on  each  implant,  with  a  torque  of  30  Ncm,  according  to  the
manufacturer’s  instructions.
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Fig. (1). Clinical view of the implants (a) and the implants with abutments (b) evaluated.

The modelling  and the  experimental  setting  were  set  on  the  basis  of  the  conditions  described in  the  previously
published papers [21, 33].

The models were subjected to a simulated occlusal axial load of 100 N. The value was chosen in accordance to other
studies published before [21, 33]. The measure of the force of each loading pressure was confirmed using a calibrated
load cell (low-range transducing cell, Model T51P, Ohaus Corporation, Pine Brook, NJ, USA), which was mounted on
the base of the loading structure.

The area and the distance among the lines, that could be distinguished by color changes, generated in the resin after
loading were evaluated by a computerized analysis (Image Tool 5.02 for Microsoft Windows™) of two high-resolution
images (photographs) obtained from the front of the block of resin (Fig. 2). To measure the distance of the fringes from
the implant body, three reference points were considered: the initial portion of the implant (p1), in the center of the
implant (p2) and, in the most apical portion of the implant (p3), as shown in Fig. (3).

Fig. (2). Image showing the measurement of the area of stress distribution.
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Fig. (3). Image showing the reference point for the measurement of the fringe distance.

The measurements were taken independently by two researchers (SG and SC) and the measurements were repeated
three times for each reference point for each group. The mean values were considered in the evaluation.

Statistical Analysis

Data of the measurements of the fringes area were analyzed by one-way ANOVA (SPSS 17.0; SPSS Inc., Chicago,
IL) at a significance level of 0.05. The distance of the fringes relative to the body of the implant was analyzed using the
t-test to compare the data among the groups for each portion, with the level of significance set at 95%.

RESULTS

Considering the total area of stress distributed to the surrounding tissues, comparing the two implant lengths, short
and standard length implants (both cylindrical and conical) demonstrated a similar load distribution, with comparable
mean values, as shown in Fig. (4). No statistically significant differences were found (p=0.82).

Fig. (4). Mean of the areas of the fringes in the four evaluated groups.

With  regard  to  the  comparative  evaluation  of  different  reference  points,  in  the  crestal  region,  the  cylindrical
implants  (groups  1  and  3)  showed  a  higher  stress  concentration  (p<0.05)  when  compared  to  the  conical  implants
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(groups 2 and 4); however, in groups 2 and 4, the distribution was more uniform in the three reference points of the
evaluation when compared to the other two groups. In groups 3 and 4, the stress distribution followed a very similar
distribution pattern in terms of distance and area.

A comparison of the distribution of the fringes revealed an increased stress concentration in the crest region and
apical portion of the long cylindrical implant (group 1) and, the conical implants (group 2) showed a more uniform
distribution. In the evaluation of distribution of the fringes between short implants, we also observed a more uniform
and even distribution  of  stress  in  conical  implants  (group 4),  and in  the  cylindrical  implants  (group 3),  the  fringes
exhibited  a  higher  concentration  (lower  distance  among  different  lines)  and  were  less  organized  and  slightly
concentrated  in  the  cervical  region  (Figs.  5  and  6).

Fig. (5). Linear measurements (means) of fringe distance in each group referring to each reference point.

Fig. (6). Photoelastic representation in the four groups: (A) Group 1; (B) Group 2; (C) Group 3; and (D) Group 4.

No significant  differences  could be  evaluated between group 1  and group 2  and between group 3  and group 4.
However, comparing data from groups of long implants (groups 1 and 2) with the data of groups of short implants
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(groups 3 and 4), significant differences (p<0.05) were found in values ​​for position p1, which corresponded to the bony
crest.

DISCUSSION

The  present  study  reported  the  results  of  a  photoelastic  investigation  on  stress  distribution  under  laboratory
conditions around short (7 mm) and standard length (13 mm) dental implant with a cylindrical and conical design.

In order to adequately interpret the results, some limitations should be considered. Photoelastic investigation is a
viable method for studies about stress distribution under laboratory conditions. However, if compared to finite element
computerized  simulations,  photoelastic  analysis  is  more  prone  to  biases  in  the  reproducibility  of  the  experimental
conditions. Another limitation of the photoelastic models is related to the methods in taking standardized photographs
that were used for data analysis. In this particular study many photographs were taken before obtaining images that
could  be  comparable  among  them  for  different  groups.  With  regard  to  the  experimental  model,  the  choice  of  not
performing  the  analysis  under  oblique  forces  could  have  limited  the  external  validity  of  the  results.  In  the  present
investigation, the inclusion of implants in resin was repeated until the image of the stress distribution is symmetrical on
both  sides.  Next,  the  particular  shape  of  the  implants  used  could  limit  the  external  validity  of  the  outcomes  of  the
investigation.  Finally,  although  photoelastic  investigations  enabled  adequate  simulation  conditions,  the  particular
characteristics  of  the  bone  did  not  allow  the  consideration  of  the  results  of  the  present  study  to  be  completely
transferrable to clinical conditions.

Bone  stress  is  one  of  the  major  factors  that  influences  bone  resorption  around  dental  implants  [21  -  23]  The
mechanisms of this effect are due to the response of bone osteoclasts, which are activated by excessive physical stress,
and induce the disruption of bone tissue in order to minimize the forces [24, 25].

In in vivo clinical setting, the involvement of several factors that affect the stress transmission dynamics to bone
surrounding dental implants was evaluated in a number of studies [26 - 31].

Bone characteristics, in terms of the thickness and density of cortical and medullar bone, have been described to
affect most of the patterns and entity of stress distribution [26 - 30]. A great amount of stress transmitted to bone has
been attributable to a decrease in cortical bone thickness [31]. A previous study [28], compared bone quality (D1, D2,
D3, and D4 according to the Lekholm and Zarb [32] classification) and stress transmitted to bone tissue using finite
element analysis. The authors concluded that more dense bone (D1 and D2) transmitted less force than less dense bone
(D3 and D4). In the present paper the simulated bone has one particular density, without any difference between the
cortical and the medullar portion. Other factors affecting the dynamics of stress transmission to implant-surrounding
bone were related to implant geometrical characteristics, as described earlier [33 - 37]. Taking into consideration short
implants, one study [16], shown that most of the stress transmitted to bone was due to the occlusal load itself and the
crown-to-implant  ratio  affects  only  a  small  portion  of  the  total  stress.  Further,  Chang  et  al.  [17]  suggested  that  an
adequate occlusal load may contribute to a more proper distribution of stress when using short dental implants. The
present investigation showed that the total area of stress distribution to bone was scarcely influenced by the geometrical
characteristics  of  the  implants.  This  is  quite  obvious  because  the  implant-abutment  structure  did  not  show  any
significant  permanent  deformation,  which  can  cause  a  reduction  in  total  load.  Moreover,  in  our  study,  conical  and
cylindrical implants did not show any significant difference in area and distance of the stress transmission to bone. This
assumption is partially in contrast with the results obtained in a previous study [38], which compared stress distribution
around  conical  and  cylindrical  implants.  However,  it  should  be  taken  into  consideration  that  the  main  differences
between the two geometrical shapes could have been caused by the size and distance of implant threads, which are
completely different from the implants used in the present study. In fact, the outcomes of this study were obtained using
implants with a different shape and size of threads and this affected most of the occlusal force transmission to implant-
surrounding  bone  [39,  40].  However,  comparing  the  fringe  distribution,  the  images  showed  an  increased  stress
concentration in the crest region and apical portion of the long cylindrical implant (Group 1), and the implant conical
(Group  2),  demonstrated  a  more  uniform  distribution.  Taken  together,  these  data  were  consistent  with  the
aforementioned study [38]. In the fringes of short implants, it was also possible to observe a more uniform and even
distribution of stress in the conical implants (group 4). For the cylindrical implants (group 3), the fringes had a higher
concentration and were less organized and slightly concentrated in the cervical region.

CONCLUSION

The present study showed that the implant length seemed not to affect the total amount of stress distributed to the
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implant-surrounding  bone  under  axial  loading  condition.  Higher  stress  concentrations  (calculated  measuring  the
difference  between  fringes)  were  transmitted  by  longer  implants  than  shorter  ones,  independent  of  implant  shape.
However, the short implants had a lower concentration of stress on the crestal bone region when compared with long
implants. Thus, further investigations may help to provide a deeper understanding of the effect of implant length on
stress distribution.
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