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Abstract:

Background:

Pulpitis is a pulpal inflammation. It generally occurs when there is inflammation within a tooth as a result of anything like grinding or decay. After
dental  inflammation,  microcirculation  and  sensory  nerve  activity  seem  to  play  the  most  critical  role  in  reducing  inflammation.  Therefore,
researchers emphasize the study of dental nerve activity, especially in acute clinical problems in inflamed teeth and pulp regeneration. This review
aims to investigate the possibility of using dental stem cells to regenerate dental nerves in order to repair dentin-pulp complexes for maintaining
and restoring tooth structure and function, which nanosystems can help in this matter.

Materials and Methods:

In this paper, we review the literature regarding the theory of dental tissue engineering by neural differentiation of dental stem cells and nano-
systems, and the comprehensive search on PubMed, Scopus, and Web of Science was conducted up to July 2022.

Results:

According to recent studies,  dental  soft  and hard tissue healing also includes nerve fibers.  A deeper understanding of how dental  nerves are
implicated in pulpitis may assist endodontic treatment. Stem cell-based treatments may be used to regenerate dental nerves to repair dentin-pulp
complexes to maintain and restore tooth structure and function.

Conclusion:

The emphasis on dental nerve regeneration appears to be a critical stage in fostering spontaneous tooth regeneration as well as a sustainable tooth
regeneration method. It is essential to further investigate dental tissue engineering by neural differentiation of dental stem cells.
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1. INTRODUCTION

One  of  the  most  serious  public  health  concerns  is  tooth
decay and pulp inflammation, often known as pulpitis. Pulpitis
may  be  diagnosed  clinically  as  a  toothache  caused  by  an
accumulation of polymorpholeukocytes in the pulp area [1, 2].
Toothache, which varies in intensity depending on the stimulus
which stimulates the damaged tooth, is sensed by a cascade of
sensory nerve impulses to the brain [3]. One of the functions of
dental  nerves  is  to  provide  sensory  signals  to  the  central
nervous system (CNS), which causes a variety of responses in
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the body. Primary sensory fibers detect stimuli in the pulp of
the  tooth  and  initiate  signal  transmission  [4].  According  to
sensory  signals,  dental  nerve  fibers  are  thought  to  be  only
responsible  for  delivering  pain  impulses  in  pulpitis  [5  -  7].
However, recent studies have shown that they have also been
linked to the regulation of inflammatory reactions.

It  was  proven  that  after  tooth  inflammation,  micro-
circulation and sensory nerve activation diminish inflammation
[8  -  11].  Microcirculation  is  affected  by  pulp  nerve  activity.
Therefore,  researchers  emphasize  upon  the  study  of  dental
nerve activity, especially in acute clinical problems in inflamed
teeth and pulp regeneration [12, 13]. Also, nerve fibers are an
important  component  of  the  dental  pulp,  especially  during
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inflammation,  which  directs  the  tooth's  essential  functions,
such as  angiogenesis,  rousing  immune cells,  preserving pulp
structure, and strengthening defense mechanisms. In addition,
neuropeptides  derived  from  nerve  regeneration  may  aid  in
repairing injured teeth [14, 15]. In other words, the regenerated
dental  nerve  stimulates  the  soft  tooth  component  (pulp)  and
aids in the formation of the hard tooth component [16].

Stem  cell-based  treatments  may  be  used  to  regenerate
dental nerves to repair dentin-pulp complexes to maintain and
restore tooth structure and function [17, 18]. Dental stem cells
(DSCs) are found in the dental pulp and help to regenerate and
repair  damaged  teeth  by  reducing  inflammation  caused  by
caries.  To  rebuild  dental  pulp,  all  neural  crest-derived  DSCs
are  pluripotent  and  grow  into  endothelium,  adipocyte,
odontoblast, chondrocyte, myocyte, neural, and osteoblast cells
[19  -  22].  In  addition,  all  DSCs  were  shown  to  be  able  to
differentiate  into  neuron-like  cells  in  tissue  engineering  of
various target organs, including the brain and spinal cord, as
defined in vitro situations [23 - 26].

Apexification  and  dental  pulp  stem  cells  (DPSCs)
implantation were  explored by Xuan and colleagues,  to  treat
pulp  necrosis  in  immature  teeth.  After  12  months,  DPSCs
implantation restored three-dimensional pulp tissues with blood
channels and sensory neurons. In comparison to apexification,
DPSCs implantation enhanced root length and reduced apical
foramen width.  DPSCs also regenerate  sensory nerves in the
tooth pulp. According to the results, DPSCs implantation may
be able to restore entire dental pulp and repair trauma-related
tooth damage [27].

Tooth regenerative therapy via  DSCs mainly depends on
tissue  engineering  by  utilizing  nano-structured  biomaterials
[28,  29].  Using  nano-designed  materials,  it  can  now
concentrate numerous diverse activities in a small volume and
improve targeting quality while lowering the cost and delivery
of  active  molecules.  In  addition,  multi-active  therapies  and

nanomaterials  with  extracellular  mimetic  nanostructures  are
critical for resolving infection and inflammation while guiding
pulp cell colonization and differentiation [30, 31].

It  has  been  observed  that  human  neural  tissue's
extracellular matrix has a nano-to-micro hierarchical structure.
Today, nanotechnology is used in all medical fields [32 - 36].
Nano-systems are the only option to reconstruct human neural
tissue  extracellular  matrices  with  outstanding  biomimetic
properties  and  physicochemical  properties,  which  makes
significant advances in neural tissue engineering [37]. Nano-
system  is  produced  from  a  variety  of  natural  and  synthetic
biomaterials [38 - 40], such as collagen [41, 42], chitosan [43],
gelatin [44], poly-ε-caprolactone (PCL) [45], poly (lactic-co-
glycolic  acid)  (PLGA)  [46],  etc.  that  promote  neural  tissue
formation. Unfortunately, the number of studies related to tooth
reconstruction, pertaining neural regeneration is very limited.
Most  studies  focused  on  DSCs  regenerating  the
central/peripheral  nervous  system  [47  -  50].

This  review  first  discussed  dental  tissue  engineering  by
neural differentiation of dental stem cells and the role of nano-
system  in  the  regeneration  of  nerve  tissue  in  the  system  of
teeth.
2. SEARCH STRATEGY

To include related articles and studies of neurogenerative
in  relevance  to  teeth  restoration,  narrative  research  was
conducted on PubMed, Scopus, and Web of Science up to July
2022. The research only involved full-text articles published in
English.  For  instance,  the  research  syntax  used  on  PubMed
included  “dental  stem  cells,”  “dental  Stem  cells,”  DSC  or
DSCs,  Neurogenesis,  “Neurogenesis,”  or  “tooth's  nerves,”
“tooth nerve” or “dental nerve,” and “tooth regeneration,” or
“dental regeneration”, “tooth restoration,” “dental restoration,”
and,  “nano-systems,”  or  “nano-system,”  “nanosystem”,
“nanosystems,”  “nanocomposite”,  “nanocomposites,”  and,
“nerve differentiation,” and, “nanotechnology,” or “nanotech.”

Fig. (1). The function of dental pulp neuronal-like cells for the regeneration of tooth.
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3.  ROLE  OF  DENTAL  NERVE  IN  TOOTH
DEVELOPMENT

The dental pulp is a neural network composed of the dental
nerve of the fifth branch of the cranial nerve, which includes
both sensory and sympathetic nerves. The sensory nerves of the
pulp are situated in the trigeminal ganglion, where thousands of
axons enter the tooth through the apical foramen and branch in
the whole pulp. Most neural packets enter the dentin and form
the parietal network of nerves (plexus of Raschkow). The end
of the free nerve is on the odontoblast cell  layer.  The nerves
continue to the coronal region, create a plexus in the vicinity of
the odontoblasts and eventually join the dentinal tubules. They
have  diverse  functions,  positions,  and  associations  with  the
pulp,  dentin,  vasculature,  and immune cells.  The dental  pulp
nerve  secretes  some  neuropeptides  such  as  neuropeptide  Y
(NY),  substance  P  (SP),  calcitonin  gene-related  peptide
(CGRP), vasoactive intestinal polypeptide (VIP), galanin, and
pituitary  adenylate  cyclase-activating  polypeptide  (PACAP),
neurokinin A (NKA), etc. which have a vital role in regulating
some function in teeth such as dentinogenesis, vascularization,
immune reaction, and bone regeneration [51 - 54] (Fig. 1).

3.1. Dentinogenesis (the formation of dentin)

Nerve  fibers  are  involved  in  about  30  to  70%  of  the
odontoblastic  process,  called  intra-tubular  nerves.  Dentinal
tubules  include  multiple  nerve  endings  in  the  pre-dentin  and
dentin located at a distance of 100-150 micrometers from the
pulp, which accompanies the odontoblast process [55]. CGRP
is secreted from dental pulp nerves and is effective in dentin
calcification  [56].  According  to  another  research,  various
concentrations of  CGRP were studied on bone colonies.  The
results  suggest  that  the  higher  concentration  of  this
neuropeptide raises the ossification level [57]. The molecular
mechanism of this reaction, CGRP, binds to target cell surface
receptors that cause the expression of ossification-related genes
[58]. Furthermore, the research found that CGRP plays a vital
role  in  the  creation  of  the  dentin  bridge  during  pulpotomy
healing [59]. A post-pulpotomy study of first maxillary molars
in 56-day-old Wistar rats showed that after seven days, large
numbers of newly germinated CGRP-IR nerve fibers appeared
in the remaining pulp, and some terminated in differentiating
odontoblast layer and initial matrix layer of the dentin bridge
were  completed.  These  findings  suggest  that  sensory
neuropeptides such as CGRP may be involved in the formation
of dentin bridges in the rat molar [59].

3.2. Regulation of Vascularization

Preservation  of  pulp  function  is  due  to  microcirculation,
which provides tissues with nutrients and removes metabolites
and wastes. During this circulation, the blood pressure in the
pulp vascular system is coordinated with the interstitial tissue,
and sufficient blood pressure is maintained in the pulp vascular
system. The intensity of blood flow in the pulp vessels varies
throughout  life,  including  growth,  puberty,  and  especially
inflammation. In the first stage of inflammation, the intensity
of  blood  flow  and  vascular  permeability  increases.  Then,
leukocytes  migrate  to  the  venular  network  [60,  61].  Under
these conditions, the human pulp can see sufficient oxygen and
nutrients  for  damaged  tissue.  Observations  have  shown  that

pulp blood vessels are functionally related to nerve fibers [62].
Studies have shown that the rate of blood flow in the anterior
or  molar  teeth  of  rats  exposed  to  electrical  stimulation
increases, whereas if the inferior alveolar nerve is denervated,
the rate of blood flow to the stimulus decreases [63 - 65]. NY is
released by the dental pulp nerve, which is situated near blood
vessels and reduces blood flow from the pulp via  a  calcium-
dependent process.

In  contrast,  increased  expression  of  NY  regulates
angiogenesis factors and repairs pulpal inflammation. Besides,
interdental  sensory  nerves  provide  neuropeptides,  such  as
CGRP and SP,  that  facilitate  blood flow from the pulp [66 -
68]. In addition to neuropeptides secreted by sensory nerves,
glutamate can regulate blood flow in vasodilation. Glutamate
transporter-expressing neurons release glutamate into the pulp
[69],  which  binds  to  the  pulp's  metabotropic  glutamate
receptors  (GluRs),  which  regulate  pulp  blood  flow  [70].

As a result, neuropeptides secreted from the dental nerve
have a critical role in regulating tooth function. Loss of nerve
in the tooth stops blood flow to the tooth pulp and causes the
dentin to change color (yellow, brown, even black), sometimes
referred to as pulp necrosis, leading to tooth death. Different
trauma studies in animals and humans have revealed that nerve
fibers respond to dentin and pulp damage by germinating their
terminal  branches  in  the  adjacent  residual  pulp  and  altering
their  neuropeptides.  Therefore,  a  few  days  after  injury,  the
undamaged nerve fibers return close to their original shape and
function. Its feature has the role of restoring dental function [71
-  74].  El  Karim  et  al.  discovered  that  culturing  human  pulp
fibroblasts in the presence of neuropeptides such as calcitonin
gene-related peptides  increased the expression of  angiogenin
and VEGF proteins. This is the first study to show that dental
neuropeptides  play  a  role  in  regulating  angiogenic  growth
factor  expression,  implying  that  neuropeptides  may  play  an
important role in pulpal inflammation and repair in the future
[66].

3.3. Regulation of Immune Reaction

Dendritic  cells  (DCs)  expressing  class  II  antigens  in  the
periodontoblastic region of the dental pulp (OX6 +) are closely
related to the nerve section of the tooth [75]. When tooth decay
progresses to the dentin area and is not treated, DC cells and
nerve cells in the tooth decay area move precisely at the pulp-
dentin border [76]. At the level of myelinated nerve fibers in
the dental pulp, there is a toll-like receptor (TLR)-4 and cluster
of differentiation 14 (CD14), which are known as the first line
of defense against infection and critical molecules in the innate
immune system, respectively [77, 78]. The spatial similarity of
the nerve endings to the DC cells indicates an almost similar
function,  suggesting  the  possibility  of  paracrine  nerve
interaction and immunity in the early stages of carious pulpitis.
Therefore,  the  dental  nerve  is  crucial  for  the  dental  immune
system.  A  recent  bioinformatics  study  was  conducted  to
identify possible pulpitis biomarkers. Immune system signaling
pathways  such  as  the  IL-7  signaling  pathway,  the  Toll-like
receptor  signaling  pathway,  the  NF-kappa  B  signaling
pathway, and the TNF signaling pathway are activated during
dental  pulp  inflammation,  as  are  neuroactive  ligand-receptor
interactions [79].

Observations show that the activation of trigeminal sensory
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neurons  combined  with  the  sensitivity  of  transient  receptor
potential  vanilloid  subtype  1  (TRPV1)  is  mediated  by  the
activation  of  the  TLR4-mediated  mechanism  by
lipopolysaccharides  (LPS)  microorganisms  [80,  81].  This
response  lowers  the  activation  threshold  of  nerve  cells  and
leads  to  a  hyperalgesic  state.  As  previously  described,
neuropeptides  are  involved  in  regulating  localized
microcirculation  in  pulpitis.  It  promotes  and  directs  immune
cells  to  local  tissues  by  increasing  blood  flow  and  vascular
permeability.  It  has been observed that  the denervated molar
pulps of mice weaken the immune system in the inflammatory
tissue of the pulp compared to healthy teeth [82, 83]. Ho et al.
showed  that  at  the  surface  of  immune  cells,  such  as
monocytes/macrophages,  there  are  receptors  for  receiving
neuronal signals [84]; as a result, the tooth nerves can recruit
immune  cells  directly.  A  recent  study  showed  that
macrophages, as inflammatory and immunologic mediators in
the trigeminal ganglion, play a major part in the development
of pulpitis and hyperalgesia according to the processes of CNS
underpinning ectopic pain after peripheral inflammation [85].
Various  studies  have  shown  that  the  neuropeptides  SP  and
CGRP  interact  with  human  monocytes  and  T  lymphocytes

through  chemical  mechanisms  [86,  87].

Following  dental  pulp  injury,  neuropeptides  enhance
vascular  permeability  and  promote  immune  cell  chemotaxis
into the tooth pulp by direct contact with immune cells. If the
dental  nerve  is  destroyed,  there  is  no  longer  a  stimulus  to
invoke  immune  cells  [82,  83].  Although,  in  healthy  teeth,
neuropeptide production and secretion decrease (35), it can be
concluded that  the main factor  in  maintaining the number of
immune cells in healthy tooth pulp is not nerve cells.

3.4. The Role of Nerves in Apical Periodontitis

Inflammation of the teeth and pulpitis can affect periapical
tissue and eventually lead to acute/chronic apical periodontitis.
Reports have shown that the sensory nerves of the tooth gather
in the periapical lesions and recruit macrophages and dendritic
cells in periapical tissue. Thus, Dental nerves are essential in
initiating  the  immune  response  and  tissue  repair  in  apical
periodontitis  [88,  89].  Apical  periodontitis  is  associated with
bone  destruction  in  the  periapical  region,  in  which  the
sprouting  of  dental  nerves  for  bone  regeneration  is  observed
[72, 90].

Fig. (2). Diagrams illustrating how the pulp regenerates following the implantation of pulp stem cells with G-CSF into permanent adult teeth of the
dog pulpit model, in which the stages are (A) teeth with pulpitis, (B) pulpectomy, (C, D) Transplantation, and (E) regeneration.
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3.5.  Reconstruction  of  the  Dental  Nerve  in  the  Tooth
Regeneration

Pulp/dentin  reconstruction  is  one  of  the  most  critical
challenges  and  the  ultimate  goal  for  functional  tooth
restoration.  Tooth  innervation  can  maintain  dental  pulp
homeostasis.  Tooth  sensory  nerves  can  stimulate  the  pulp's
defense system by invoking immune and inflammatory cells to
the  injury  site  [65].  In  the  sensory  denervation  of  damaged
teeth, blood flow and immune cell recruitment are disrupted,
resulting in necrosis of the tooth pulp [91, 92]. Fristad et al., by
intermittent  stimulation  of  the  rat  pulp,  observed  that  re-
innervation/neurogenesis improves coronal dentin [65]. Ihara et
al.  examined  pulp  stem  cells  with  granulocyte  stimulating
factor  (G-CSF)  in  dog  teeth  to  regenerate  tooth  pulp.  The
results  showed  that  the  nerves  labeled  DiI  to  the  trigeminal
ganglion responded positively  to  the  electrical  pulp  test,  and
the sensory signals were felt as pain. Neurogenesis axons can
aid in the process of angiogenesis, the release of immune cells,
and  the  regulation  of  inflammation  in  damaged  tissue  to
strengthen the pulp's  defense mechanism (Fig.  2)  [93].  Also,
the blood flow in the regenerated pulp after two months was
similar to that of a normal pulp, which could play an essential
role  in  regenerating  the  pulp  and  dentin  by  controlling
inflammation. The interaction of nerve fibers and blood flow
maintains  pulp  tissue  homeostasis,  which  can  cause  the
enlarged  apical  portion  to  fade  after  pulpectomy  and  the
formation  of  lateral  dentin,  which  is  a  benefit  in  inhibiting
tooth fractures. This restoration prevents secondary tooth decay
and prolongs tooth life [93].

3.6. DSCs and Differentiated Neuronal Markers

Depending  on  their  origin,  DSCs  inherit  some  of  the
typical features of nerve cells [94, 95]. DSCs inherit some of
the typical features of nerve cells,  depending on their origin.
DSCs  have  been  displayed  to  be  able  to  express  specific
neuronal  markers,  for  example,  glial  fibrillary  acidic  protein
(GFAP), S100 calcium-binding protein B (S100B), and nestin.
In  addition,  DSCs express  more  neuronal  markers  than bone
marrow  mesenchymal  stem  cells  (BMSCs),  indicating  that
DSCs can be utilized as perfect cells for neural differentiation
and regeneration. Along with neuronal markers, the expression
of neurotrophic factors is essential. Neurotrophic factors such
as  glial  cell  line-derived  neurotrophic  factor  (GDNF),  brain-
derived neurotrophic factor (BDNF), and nerve growth factor
(NGF) can be expressed through various DSCs. The prepared
conditioning media from DSCs can induce neurite outgrowth
and improve the growth rate of Schwann cells in vitro [96]. In
addition,  DSCs,  unlike  other  somatic  stem  cells,  display
expression  of  embryonic  stem  cells  (ESC)  pluripotency
markers, such as stage-specific embryonic antigen-4 (SSEA-4),
octamer-binding transcription factor 4 (Oct-4), tumor rejection
antigen  (TRA)-1–60  and,  Nanog,  when  derived  from  the
immature  dental  pulp  during  the  development  of  the  tooth.

DSCs  have  neuron-like  characteristics,  which  makes  in
vitro differentiation easier. Several methods for DSC-to-neuron
differentiation  have  been  developed.  In  summary,  inductive
protocols need to DSCs versatile differentiation. DSCs can be
differentiated into neurons, Schwann cells, oligodendrocytes,

and dopaminergic-like cells. Therefore, DSCs are suitable stem
cell sources to treat nervous diseases in stem cell therapy. The
efficiency  of  nervous  disease  therapies  with  stem  cells  is
strongly influenced by trophic factors such as GDNF, BDNF,
NT-3,  NGF,  platelet-derived  growth  factor  (PDGF),  and
vascular endothelial growth factor (VEGF) [97, 98]. The DSCs
express  these  trophic  factors  more  than  MSCs  derived  from
adipose tissue (ADSCs) and bone marrow (BMSCs) [97, 99].
Furthermore,  DSCs  display  more  neural  supportive  and
neuroprotective  properties  than  other  MSCs  in  response  to
nervous  system  damage.  DSCs  possess  the  capability  to
decrease  neurodegeneration  by  the  secretion  of  NGF  and
BDNF in the neuronal apoptosis in early stages and stimulate
the survival of motor and sensory neurons in spinal cord injury
(SCI) [100, 101].

Additionally, secreted trophic factors via DSCs promoted
the regeneration of axons despite the attendance of inhibitors of
axon growth in the entirely transected spinal cord model of SCI
[102,  103].  DSCs  also  secreted  cytoprotective  factors,
providing direct and indirect protection against cell death in an
ischemic  astrocyte  model  of  injury  [104,  105].  DPSCs  have
displayed  a  higher  cytokine  expression  facilitating  neural
differentiation  compared  with  other  stem cells,  such  as  stem
cells from the apical papilla (SCAP), Dental follicle stem cells
(DFSCs),  and  BMSCs  [106].  SCAP  showed  neural
differentiation activity. During tooth development, the dental
papilla  converts  to  dental  pulp  tissue.  Findings  suggest  that
SCAP characteristics in terms of maturity are more similar to
ectomesenchyme than DPSCs [107].

SCAP  was  derived  from  the  apical  papilla  tissue  of
immature permanent human teeth, whose proliferation activity
is two or three times more than DPSCs. These SCAPs express
several neuronal markers such as βIII-tubulin, nestin, GFAP,
and neurofilament M upon stimulation of neural differentiation
with EGF and bFGF [108]. DFSCs are isolated from wisdom
teeth  and  have  this  multilineage  differentiation  capability
[109].  Morszeck  et  al.  reported  that  DFSCs  could  form
neurosphere-like  structures  in  serum-free  media  comprising
FGF-2 and EGF plated onto low-attachment cell culture plates.
Their  study  also  showed  that  DFSCs-derived  neural  cells
grown on gelatin and laminin show a relatively long axon-like
cell extension, showing that the morphology of neural cells and
axon-like cell extensions were related to cell culture substrates.
In addition,  they showed that  the time-dependent addition of
supplements to neural stem cells, such as retinoic acid, FGF-2,
and EGF, affected the neuronal cell lineage differentiation into
γ-aminobutyric  acid  -ergic  (GABAergic)  or  dopaminergic
neurons  [109].

Inflammatory  cytokines  may  both  aid  and  impede  the
management  of  neurogenesis.  IL-6  is  a  neuromodulator  that
affects  brain  stem cell  renewal,  progenitor  cell  division,  and
differentiation  [110].  13  IL-4,  IL-11,  and  IFN-g  all  promote
increased  neuronal  differentiation  [111].  SHED  displayed  a
predominance  expression  of  IL-6,  IFN-g,  and  IL-4  in  this
study,  but  DPSCs  revealed  a  1.34-fold  greater  expression  of
IL-11 than SHED [112].

SHED showed substantially greater amounts of cytokines
related to neuroprotective factor synthesis than DPSCs. Among
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these  cytokines  are  NT-3,  BDNF,  and  GDNF.  There  is
evidence  that  genetically  altered  cells  may  live  longer  and
operate better, and that overexpressing neuroprotective proteins
or  neurotransmitters  in  cells  might  allow  more  rapid  neural
regeneration [113 - 115].

Among  the  neurogenesis-related  cytokines,  b-NGF
expression  was  6.85  times  higher  in  DPSCs  than  in  SHED
[112].  NGF,  a  member  of  the  protein  family  known  as
neurotrophins, is an important regulator of neurodevelopment
and cell proliferation. In previous studies, it  was found to be
able  to  repair  nerve  injury  in  clinical  therapy;  Phyo  et  al.
reported  that  increased  levels  of  NGF  expression  supported
reinnervation in pulp regeneration in a rat molar [116]. When
employed  as  paracrine  factors,  NT-3,  GDNF,  and  BDNF,
which  were  shown  to  be  more  abundant  in  SHED  than  in
DPSCs,  were  found  to  stimulate  neuronal  differentiation  in
both SHED and DPSCs. This enabled SHED to provide a more
immunologically  tolerant  environment  for  stem  cell
transplantation,  as  well  as  superior  circumstances  for  cell
proliferation and neurogenesis. DPSCs, on the other hand, have
been promoted as beneficial for angiogenesis.

The PDLSC secretome may increase the functioning of the
PI3K/Akt/mTOR  axis,  leading  to  the  restoration  of  BDNF
production  and  the  reduction  of  oxidative  stress  and
inflammation in injured neurons. Furthermore, the presence of
neuroprotective chemicals such as NT-3, IL-10, growth factors,
and immunomodulatory cytokines in the conditioned medium
provides  a  neuroprotective  effect  [117].  Furthermore,  prior
research indicated that the SCAP had much greater amounts of
BDNF and GDNF than the other DSCs [103].

3.7. Nano-system Involved in Dental Nerve Differentiation
and other Neural Tissue

One  of  the  promising  new  therapies  in  the  field  of
endodontics  is  dentin–pulp  complex  tissue  engineering.  The
materials  employed  in  the  field  of  regenerative  endodontics
now,  for  instance,  mineral  trioxide  and  calcium  hydroxide
aggregates,  cannot  guarantee  the  entire  dentin–pulp  complex
regeneration,  particularly  about  neurovascular  induction.  A
water-soluble graphene oxide–copper (GO-Cu) nanocomposite
was  fabricated  by  Li  et  al.  [118],  who  studied  its
neurovascularization and odontogenic-inducing potentials via
DSCs. Low doses (≤10 µg/mL) of graphene oxide–copper was
ineffective on DPSCs’  promoted adhesion,  proliferation,  and
viability. The treatment of DSCs with graphene oxide–copper
led  them  to  differentiate  into  odontoblasts  and  secret  higher
quantities of GDNF and VEGF at the time when cultured on a
scaffold  made  of  calcium  phosphate  cement  (CPC/GO-Cu)
coated with graphene oxide–copper. The treatment of human
umbilical  vein  endothelial  cells  (HUVECS)  with  graphene
oxide–copper led to more substantial migratory potential, tube
formation,  and  higher  vascular  endothelial  growth  factor
expression.  Additionally,  using  the  graphene  oxide–copper
treatment,  the  immunomodulatory  genes,  such  as  hepatocyte
growth  factor  (HGF),  2,3-dioxygenase  (IDO),  and  human
leukocyte  antigen  G  (HLA-G),  were  upregulated  in  DPSCs.
The  subcutaneous  transplantation  of  calcium  phosphate
cement/graphene  oxide–copper  into  nude  mice  led  to  the

formation of  dentin–pulp complex–like structures  expressing
CD31,  growth-associated  protein  43  (GAP43),  and  dentin
sialophosphoprotein (DSPP), and the blood vessel numbers and
the mineralized area were lower in the CPC-alone group than
the CPC/GO-Cu group. These results reflect graphene oxide-
copper's  neurovascularization  and  odontogenic-inducing
potentials  and  its  promising  applicability  for  regenerative
endodontics  purposes  [118].

They reflected the graphene oxide–copper biocompatibility
and  its  neurovascularization-inducing  and  odontogenic
behaviors toward DPSCs. As a Cell Counting Kit-8 (CCK-8)
assay, EdU incorporation and live/dead staining have affirmed
that  at  low  doses  of  GO-Cu,  DSCs  proliferate  and  survive
actively.  As  the  formation  of  the  calcified  nodule  and
odontogenic genes’ protein and mRNA expression have shown,
grapheme  oxide–copper  may  lead  to  promoted  odontogenic
differentiation of DPSCs. Improved migration, greater VEGF
expression  of  HUVECs,  higher  tubular-structure  formation,
and higher expression of GDNF and VEGF in DSCs confirm
the  neurovascularization-inducing  potential.  In  addition,
graphene  oxide–copper  leads  to  increased  expression  of
immunomodulatory genes HGF, IDO, and HLA-G in DPSCs.
Eight  weeks  after  the  subcutaneous  transplantation  of  CPC/
GO-Cu loaded with DPSCs, dentin–pulp complex–-structures
are  recreated  in  the  defect  region,  and  immunofluorescence
staining reflects CD31, GAP43, and DSPP expression within
the newly regenerated tissues. This research showed graphene
oxide- copper's neurovascularization and odontogenic-inducing
effects  on  DSCs,  a  new  promising  dental  material  used  in
regenerative endodontics [118].

The  aligned  electrospun  PCL/PLGA  material  could  be
employed as a scaffold for spinal cord restoration. The inserted
DFCSs onto PCL/PLGA can cause differentiation into neural
cells  in  lesions  of  SCI.  There  is  a  hypothesis  that  aligned
electrospun  fibers  have  the  potential  to  aid  the  spinal  cord
structure  as  well  as  cause  the  differentiation  of  neural  cells
[119]. A brand-new biomaterial called chitosan scaffolds has
proved to facilitate inducing DSCs to turn into neural cells and
can  possibly  be  utilized  in  SCI  therapy  in  the  future  [120].
Heparin-poloxamer  (HP),  can  simply  create  a  gel  at  body
temperature  as  a  thermosensitive  hydrogel;  therefore,  it  is
appropriate  for  in  vivo  treatments.  It  is  revealed  that  nerve
lesions  could  be  repaired  when  HP  is  loaded  with  growth
factors,  namely  FGF  and  NGF.  This  is  achieved  through
activation  of  the  Janus  kinase  (JAK)-signal  transducer  and
activator  of  transcription  (STAT),  the  mitogen-activated
protein  kinase  (MAPK)/extracellular  signal-regulated  kinase
1/2 (ERK),  The phosphatidylinositol  3-kinase (PI3K)/protein
kinase  B  (AKT)  and  signaling  pathways  [121].  The
combination  of  bFGF  and  DPSCs  remarkably  affected
neuronal  reproduction,  recovery  of  function,  and  spinal  cord
tissue reconstruction [122].  According to statistical  analyses,
HP-bFGF-DPSCs outperform HP alone or HP-bFGF in nerve
reconstruction  [122].  DSC-based  treatment  will  have  a
promising  future  for  the  treatment  of  SCI.  Various  studies
showed that collagen scaffolds combined with neural-induced
DPSCs  could  foster  axonal  outgrowth  and  myelination.  The
DPSCs could  also  be  induced to  differentiate  into  functional
oligodendrocytes by increasing the exogenous gene expression
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of the oligodendrocyte lineage transcription factor 2 (OLIG2).
This presented a therapeutic capability in sciatic nerve injury
[123].

4. LIMITATIONS IN DENTAL TISSUE ENGINEERING
AFTER IMPLANTING

Painful post-traumatic trigeminal neuropathy (PTTN) is a
known  complication  of  dental  implant  therapy.  PTTN  is  a
painful  condition  that  may  result  from  injury  to  the  sensory
division of the trigeminal nerve [124, 125]. Treatment of this
condition is challenging and there is presently no established
standard of treatment for managing neuropathic pain. Another
challenge in tissue engineering is rejection. When the immune
system  recognizes  the  transplant  as  foreign,  it  rejects  it,
triggering a chain reaction that finally causes the transplanted
organ or tissue to be destroyed. Cytokines, soluble molecules
generated  by  many  types  of  immunocompetent  cells  that
impact  each  other,  play  an  important  role  in  the  immune
response  [126].  The  immunological  responses  were  studied
from two perspectives: cellular and humoral.

4.1. Cellular Immunity

When  the  body  is  exposed  to  implant  material,
macrophages are the first phagocytes to get activated, resulting
in the early stages of inflammation [127, 128]. The presence of
macrophages  in  rejected  implants  was  connected  to  the
formation  of  granulation  tissue,  suggesting  a  connection
between  the  two  processes.  Titanium  metal  particles  were
found  in  the  cytoplasm  of  macrophages  around  the  site  of
granulation tissue [129]. Moreover, several studies have shown
that the presence of M2 macrophages in peri-implant tissue is
associated  with  decreased  inflammation,  improved  wound
healing,  and  effective  implant  osseointegration  [130,  131].

Dendritic  cells  are  involved  in  the  cellular  immune
response.  However,  more  study  is  needed  to  discover  the
particular influence of DCs on dental implant rejection in order
to achieve a positive outcome. Langerhans cells (LC), a kind of
DC, were found in the stratified epithelium, such as the skin's
epidermis  and  the  mucosa  lining  the  mouth.  They  have  the
ability to modify the immune milieu of the oral mucosa as well
as preserve oral tissues during infection [132]. Gooty et al. also
found that the number of LCs (factor CD1a) in the epithelium
and  lamina  propria  of  healthy  mucosa  collected  prior  to
implant placement was considerably greater than healthy peri-
implant  mucosa  acquired  at  the  time  of  gingival  former
implantation.  The  researchers  concluded  that  diminished
immune  responses  were  caused  by  a  smaller  amount  of  LCs
CD1a in the peri-implant tissue [133]. According to research,
the quantity of mature LCs is decreasing as a result of dental
implant  installation.  The implants,  on the other  hand,  have a
negative  impact  on  precursor  LCs  and  may  increase  their
quantity  in  peri-implant  tissue.

4.2. Humoral Immunity

Cytokines,  growth  factors,  and  hormones  are  only  a
handful  of  the  molecules  that  govern  immune  system  cell
communication  [134].  Elevated  IL-1  levels  have  been
associated with dental implant failure, presenting a full picture

of  host  reactivity  in  patients  with  peri-implantitis  collapse
[135].  Furthermore,  IL-1  is  acknowledged  as  an  important
factor  in  differentiating  between  healthy  implants  and  peri-
implantitis [136, 137]. TNF- activates the significant mediators
of  inflammation  when  coupled  with  IL-1  [138].  Chronic
inflammation, such as peri-implantitis and periodontitis, raises
tumor necrosis factor-alpha levels. Extreme TNF- production,
as shown by our findings [139], is a significant clinical issue
for  acute  and  chronic  inflammatory  diseases.  Patients  with
failed implants exhibited considerably greater TNF- levels than
those  with  successful  implants.  This  TNF  increase  has  been
linked to the failure of dental implants [126, 136, 140 - 145].

Researchers discovered that titanium dental implants boost
the synthesis and release of proinflammatory cytokines such as
interleukin  (IL)-1,  tumor  necrosis  factor-alpha,  interleukin
(IL)-17, interleukin (IL)-6, interleukin (IL)-8, and interleukin
(IL)-2.  These upregulations  may be linked to  implant  failure
and  osseointegration  loss.  However,  various  studies  have
shown contradictory results about the rise in these cytokines.
More  study  is  needed  to  identify  the  real  role  of  these
substances  in  dental  implant  rejection  [146].

Interleukin-10  (IL-10)  is  a  versatile  cytokine  that  may
affect a variety of hematopoietic cells. This cytokine's principal
role is to inhibit or stop the inflammatory response. Because of
its  favorable  in  vivo  regulatory  influence,  capacity  to  reduce
acute inflammatory feedback, and ability to produce a negative
feedback  loop  that  lowers  the  release  of  inflammatory
mediators [147], IL-10 is a crucial immune modulator [148].
Inhibiting  the  production  of  inflammatory  cytokines  such  as
IL-6  and  TNF-  may  reduce  macrophage  and  Th17  response
activity  [149].  TGF-ß1  may  be  involved  in  the  control  of
inflammation  and  immune  suppression  [150].  Important  in
wound  healing  and  the  local  inflammatory  response  [127].

CONCLUSION

In  this  review,  the  complex  role  of  the  dental  nerve  in
regenerating dentin and regulating the uptake of immune cells
in  pulp  inflammation  and  tooth  decay  was  discussed,  which
goes  beyond  the  traditional  view  of  nerve  function  only  to
transmit  pain  signals.  These  advances  can  provide  abundant
information about nerve and pulp function. Therefore, accurate
knowledge  of  dental  pulp  neurology  and  regulatory
mechanisms  of  pulp  nerve  network  can  be  new  therapeutic
perspectives in endodontics and the development of approaches
to target dental pulp neurons.

Nanotechnology  for  tissue  engineering  applications  has
made  significant  advances  in  the  regeneration  of  bone,
cartilage,  arteries,  nerves,  and  bladder  tissue.  However,  the
number of nanotechnology studies in pulp nerve regeneration
has  been  minimal.  Furthermore,  the  use  of  the  unique
properties  of  synthetic  nanomaterials  in  extracellular  matrix
simulation (mimicking in vivo situations) has been neglected.
Therefore, we propose that future studies focus on the cellular
and  molecular  mechanisms  of  the  nervous  system  in  the
context  of  nano-systems  like  nanocomposite  to  identify
unknown  parts  of  the  role  of  the  pulp  nerve  in  tooth
regeneration.
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